Скачиваний:
25
Добавлен:
15.08.2013
Размер:
427.86 Кб
Скачать

10. Pyrolysis involving compounds with CDC, CDN and CDO double bonds 523

O

 

 

 

O

 

MeS

O

Me

 

 

 

 

 

RN • •

• O

 

 

 

 

 

RHN

O

Me

 

 

SMe

 

 

N

 

 

 

 

O

 

 

 

H

 

(419)

 

 

(420)

(421)

 

O

 

 

 

 

 

MeS

O

 

 

O

 

Me

 

 

 

 

 

 

 

 

R

O

Me

R

 

 

 

 

 

 

 

 

S

 

 

O

 

 

 

 

 

(422) R = Me, SMe

 

(423)

 

 

 

O

 

 

 

 

 

 

O

 

O

 

 

 

Me

 

 

 

 

 

 

 

R1

 

 

Me

R1

 

S

 

O

 

 

 

S

R2

 

 

 

 

 

R2

O

 

 

 

 

(424)

 

(425)

 

which can be trapped by cycloaddition to carbonyl compounds192. The corresponding oxime ethers 427 provide access to the unstable alkyl fulminates, RO NDC:, which undergo further fragmentation depending on the nature of R181. The hydrazones 428 lose acetone and CO2 upon FVP at 400 520 °C to give first the cumulenes 429, which lose CO and isomerize to give the cyanamides R2N CN as the final products181.

O

 

 

X

O

N • • O

N

Me

 

R2 N

 

Me

 

O

 

O

 

 

(426)

X = OH

(429)

(427)X = OR

(428)X = NR2

524

R. Alan Aitken and Andrew W. Thomas

H. Cyclic 1,2-Diketones

1. Cyclobutenediones

Pyrolysis of cyclobutenediones results in loss of two molecules of CO to give the corresponding alkynes. Thus, for example, FVP of benzocyclobutenedione (430) at 650 °C results in formation of benzyne which dimerizes to afford biphenylene (431). This process is not as straightforward as it might seem since use of the doubly 13C labelled precursor shows scrambling of the label at the benzyne stage through equilibration with the ring-contracted carbene 381193 and benzyne is formed by the stepwise route shown

involving 432, 380 and 381194. The naphthalene fused compound 433 fragments by two distinct pathways on FVP at 600 850 °C195,196. The first involves the expected loss of two molecules of CO to give the aryne 298, which rearranges to the cyclopentindene 300 by way of 299 as shown earlier for the corresponding anhydride. A minor but significant competing process affords acenaphthylene by rearrangement to the oxacarbene 434, insertion to give 435 and loss of CO2. Simple cyclobutenediones lose two molecules of CO to give the alkyne and this has been used to particular effect by Diederich and coworkers to gain access to linear poly-ynes by using the novel technique of solution spray pyrolysis197. Thus, for example, treatment of 436 in this way at 650 °C gives 437

 

O

 

 

 

 

O

 

 

 

(430)

 

 

 

(431)

 

 

 

 

× 2

O

 

 

 

:

 

• • O

 

:

 

 

 

 

(432)

 

(380)

 

(381)

O

 

 

: O

O

Me

O

Me

 

O

 

 

 

 

 

 

 

 

 

 

 

O

(433)

(434)

(435)

10. Pyrolysis involving compounds with CDC, CDN and CDO double bonds 525

while the more complex precursor 438, formed by oxidative coupling, directly gives the hexaynes 439.

O O

O O

O O

R

R

 

 

R

R

 

(436)

(438)

R R n

(437) n = 3

(439)n = 6

2.Furan-2,3-diones and thiophene-2,3-diones

Pyrolysis of the 4-acyldihydrofuran-2,3-diones 440 results in extrusion of one molecule of CO to give the diacylketenes 441. These highly reactive products offer several possibilities for cycloaddition both with added dienophiles and by dimerization and their chemistry has been examined extensively for both R D Ph198,199 and R D But199,200. More recently the simpler monosubstituted analogues 442 have been used to generate the acylketenes 443 for R D Me201 and R D aryl202. The thiophenedione 444 also loses CO on FVP at temperatures above 300 °C to give the benzoylthiobenzoylketene 445, which at 700 °C loses COS to afford PhCOC CPh198. The naphthalene fused thiophenedione 446 undergoes loss of CO at 700 °C to give 447 and at 900 °C this further loses CO to afford the thioketene 448203.

 

O

 

 

O

 

R

 

O

 

R

O

 

 

 

 

 

R

O

 

O

R

O

 

(440)

 

 

(441)

 

O

 

 

O

R

O

O

R

O

 

 

 

 

 

(442)

 

 

(443)

 

526

 

 

R. Alan Aitken and Andrew W. Thomas

 

O

 

O

 

Ph

 

O

Ph

O

 

 

 

 

Ph

S

O

Ph

S

 

(444)

 

(445)

 

 

O

 

O

O

 

 

 

 

 

 

 

S

S S

(446) (447) (448)

3. Pyrrole-2,3-diones and pyrazole-3,4-diones

The pyrrole-2,3-diones also undergo pyrolytic loss of one molecule of CO and the resulting imidoylketenes may undergo a variety of reactions depending on the substituents present. Thus, for example, FVP of the N-adamantyl compound 449 at 675 °C gives the imidoylketene 450 which equilibrates with the benzoylketenimine 451 but may also

cyclize to 452, which fragments to the alkyne and adamantyl isocyanate204. With an N- phenyl group present as in 453205 and 454206,207, the imidoylketene 455 can cyclize to give the corresponding 4-quinolone 456 on FVP at 700 800 °C. In the case of 457, FVP could not be used due to the involatility of the material, but the reaction to give 458 was successfully achieved by solution thermolysis at 180 °C in diphenyl ether208. FVP of the 4-benzoyl compound 459 at 500 °C gives the quinolone 460181. The one pyrazoledione

Me

 

O

 

O

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

Ph

Ph

N

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ad

Ph

NAd

 

 

 

 

 

NAd

 

 

 

 

 

 

 

 

 

 

(449)

(450)

 

 

 

 

 

 

(451)

 

Me

O

 

 

 

 

 

 

 

 

 

 

 

Ph

 

C

 

C

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

+ Ad

N

C

 

O

 

Ph

Ad

 

 

 

 

 

 

 

 

(452)

10. Pyrolysis involving compounds with C=C, C=N and C=O double bonds 527

 

 

O

 

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

N

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

R

NPh

 

N

R

 

 

 

 

 

 

H

 

 

(453)

R = OMe

 

(455)

 

(456)

 

 

(454)

R = SMe

 

 

 

 

 

 

R

 

O

 

 

O

 

 

 

 

 

 

 

 

 

R

 

 

Ph

N

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

N

Ph

 

 

 

 

 

 

H

 

 

 

 

(457)

 

 

 

(458)

 

 

 

 

O

 

 

 

O

O

 

 

 

 

O

 

 

 

O

Ph

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

Ph

 

 

O

 

 

 

N

O

N

 

 

N

Ph

N

 

 

 

 

 

 

 

 

 

 

Ph

 

 

Ph

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(459)

 

 

 

(460)

 

(461)

 

examined, compound 461, undergoes complete fragmentation upon FVP at 750 °C to give CO, MeCN and PhNCO209.

I. 1,3-Dioxinones and 1,3-Dioxinthiones

A wide range of 1,3-dioxin-4-ones 462 have been used as sources of acylketenes 463 by pyrolytic loss of acetone or another ketone. While these have generally been trapped by cycloaddition210 216, recent work on simpler examples such as 464 has led to direct observation of the product 465 by low-temperature IR201,217. Heating the thione analogue 466 at 100 160 °C leads to loss of acetone to give acetylthioketene 467, which in the absence of any trap gives the unusual dithietane dimer 468218.

 

O

 

 

O

R1

O

 

R1

 

 

 

 

 

R3

R3

 

 

R2

O R4

O

2

O

 

R4

R

(462)

(463)

528

 

 

R. Alan Aitken and Andrew W. Thomas

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

Me

 

 

 

 

 

Me

O

Me

 

Me

O

 

 

 

 

 

 

 

 

 

 

(464)

 

 

 

(465)

 

 

 

S

 

 

 

S

O

 

 

 

 

 

 

 

 

 

O

 

 

 

S

 

 

 

 

× 2

Me

Me

 

 

Me

 

 

 

 

 

 

 

 

 

S

Me

 

 

Me

O

 

O

Me

 

O

 

 

 

 

 

 

 

 

(466)

 

(467)

 

 

(468)

J. Rings Containing Sulphur

FVP of benzothiophen-2-one (469) at 700 °C results in loss of CO to give benzothiete (470)219. As shown, this is in equilibrium with the o-thioquinonemethide form 471 which can undergo Diels Alder cycloaddition, and FVP of the six-membered ring precursor 472 at 500 °C has recently been used to gain access to 470/471 and several benzo-fused analogues for cycloaddition220. The 1,3-oxathiolan-5-ones 473 also undergo ready loss of CO2 upon FVP at 600 750 °C to afford a useful synthesis of substituted thiiranes 474221. The tricarbonate 475 of benzenehexathiol loses three molecules of CO upon FVP at 900 °C to give a compound which exists mainly in the dithioquinone form 476, and 477 similarly gives the oxygen analogue 478222. The cyclic sulphinic/carboxylic anhydride 479 loses SO2 and CO on heating at 240 °C to give tetraphenylethylene223. Pyrolysis of the 1,3,4-oxathiazol-2-ones 480 results in loss of CO2 to generate the 1,3- dipolar nitrile sulphides 481224. The N-benzylthiazolidinone S,S-dioxides 482 fragment

 

O

 

S

 

S

 

S

(469)

(470)

(471)

R1

R3

 

O

O

 

O

 

 

R1

R3

 

R2

R4

 

 

 

S

 

R2

S

R4

S

O

 

 

(474)

 

 

(473)

 

(472)

 

10. Pyrolysis involving compounds with CDC, CDN and CDO double bonds 529

upon FVP at 650 °C mainly by loss of SO2 to give RCHDCH2 and benzyl isocyanate, but an unexpected minor process gives the 2-phenylthiazolines 484 and the corresponding thiazoles 485225. These products are thought to arise from initial ring expansion to the sulphinic/carbamic anhydride 483, which then loses CO2 and rearranges with loss of water to give 484 and 485.

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

S

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

X

 

 

(475)

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

(476)

X = S

 

 

 

 

 

 

 

 

 

(478)

X = O

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

(479)

 

 

 

 

 

 

 

 

 

 

N

S

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

R

O

O

 

 

 

 

R

 

C

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(480)

 

 

 

 

 

 

(481)

 

 

 

PhH2 C

 

 

 

 

 

 

CH2 Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

R

 

 

O

 

N

 

R

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

O

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

O2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(482)

 

 

 

 

(483)

 

 

 

 

(484)

O

S

O

S

O

(477)

Ph

Ph

R R N

+Ph

S

(485)

530

R. Alan Aitken and Andrew W. Thomas

K. Miscellaneous Heterocyclic Compounds

Pyrolysis of the 1,3-oxazin-4-one 486 results in loss of benzylideneaniline to provide an alternative means of access to acetylketene 465201. FVP of the 1,3-benzoxazin-2-one 487 at 650 °C results in loss of CO2 to give 488, which cyclizes to afford dihydroacridine 489226. The N-alkenyl analogues 490 similarly extrude CO2 at 600 °C to give the tricyclic products 491 resulting from an intramolecular Diels Alder reaction in low yield. Perhaps surprisingly, attempts to extend this approach to the carbon analogues 492 were not successful227. A detailed study of the pyrolytic behaviour of the oxadiazolones 493 at 700 °C has been carried out and the products are largely complex mixtures of hydrocarbons whose nature depends heavily on the identity of R228.

 

O

 

 

 

 

 

 

NPh

 

O

 

Me

O

Ph

N

O

NPh

 

 

 

Ph

 

 

 

(486)

 

(487)

 

(488)

 

 

O

 

N

N

O

N

 

 

 

H

(491)

(490)

 

(489)

O

 

 

R

 

N

N

 

MeO

O

 

 

 

Ph

O

O

 

 

 

(492)

(493)

 

V.REFERENCES

1.C. D. Hurd, The Pyrolysis of Carbon Compounds, The Chemical Catalogue Company Inc., New York, 1929.

2.R. F. C. Brown, Pyrolytic Methods in Organic Chemistry, Academic Press, New York, 1980.

3.C. Wentrup, Adv. Heterocycl. Chem., 28, 231 (1981).

4.U. E. Wiersum, Recl. Trav. Chim. Pays-Bas, 101, 317, 365 (1982).

5.M. Karpf, Angew. Chem., Int. Ed. Engl., 25, 414 (1986).

10.Pyrolysis involving compounds with CDC, CDN and CDO double bonds 531

6.R. F. C. Brown and F. W. Eastwood, in The Chemistry of Ketenes, Allenes and Related Compounds (Ed. S. Patai), Chapter 19, Wiley, Chichester, 1980, p. 757.

7.R. F. C. Brown and F. W. Eastwood, Synlett., 9 (1993).

8.C. Wentrup, W. Heilmayer and G. Kollenz, Synthesis, 1219 (1994).

9.R. F. C. Brown, Recl. Trav. Chim. Pays-Bas, 107, 655 (1988).

10.S. Patai (Ed.), The Chemistry of Diazonium and Diazo Groups, Wiley, Chichester, 1978.

11.J. L. Ripoll, A. Rouessac and F. Rouessac, Tetrahedron, 34, 19 (1978).

12.M.-C. Lasne and J.-L. Ripoll, Synthesis, 121 (1985).

13.A. M. Houwen-Claasen, A. J. H. Klunder and B. Zwanenburg, Tetrahedron, 45, 7134 (1989).

14.K. A. Campbell, H. O. House, B. W. Surber and W. S. Trahanovsky, J. Org. Chem., 52, 2474 (1987).

15.J. C. Brahms and W. P. Dailey, Tetrahedron Lett., 31, 1381 (1990).

16.D. Mal, N. K. Hazra, K. V. S. N. Murty and G. Majumdar, Synlett., 1239 (1995).

17.D. Mal and N. K. Hazra, Tetrahedron Lett., 37, 2641 (1996).

18.Y. Kitamori, M. Yasunami, T. Hioki, I. Kikuchi and K. Takase, Bull. Chem. Soc. Jpn., 65, 1527 (1992).

19.Y. Kitamori, M. Yasunami, T. Hioki and K. Takase, Chem. Lett., 465 (1992).

20.Y. Kitamori, M. Yasunami, T. Hioki, K. Takase and M. Yoshifuji, Bull. Chem. Soc. Jpn., 65, 3282 (1992).

21.H. Weinmann and E. Winterfeldt, Synthesis, 1097 (1995).

22.P. W. Ambler, R. M. Paton and J. M. Tout, J. Chem. Soc., Chem. Commun., 2661 (1994).

23.F. Bourdon, J.-L. Ripoll and Y. Vallee,´ Tetrahedron Lett., 31, 6183 (1990).

24.R. Herges and W. Reif, Chem. Ber., 127, 1143 (1994).

25.K. Albrecht, O. Reiser, M. Weber, B. Knieriem and A. de Meijere, Tetrahedron, 50, 383 (1994).

26.J. F. Hartwig, M. Jones, Jr., R. A. Moss and W. Lawrynowicz, Tetrahedron Lett., 27, 5907 (1986).

27.A. P. Marchand, S. P. Reddy and P. R. Dave, Synthesis, 565 (1991).

28.L. D. Quin, J. R. Lloyd and K. C. Caster, J. Chem. Soc., Chem. Commun., 1302 (1983).

29.R. A. Aitken, J. I. G. Cadogan, I. Gosney and S. F. Newlands, J. Chem. Soc., Perkin Trans. 1, 2301 (1994).

30.C. O. Kappe, M. W. Wang and C. Wentrup, Tetrahedron Lett., 34, 6623 (1993).

31.J.-P. Beteille,´ A. Laporterie and J. Dubac, J. Organomet. Chem., 426, C1 (1992).

32.R. A. Earl and K. P. C. Vollhardt, Heterocycles, 19, 265 (1982).

33.Y. H. Hsu, M. Guzman, M. Jellinek and J. A. Landgrebe, J. Org. Chem., 54, 1752 (1989).

34.T. Hudlicky and F. J. Koszyk, Tetrahedron Lett., 21, 2487 (1980).

35.K. Rudolph, D. Robinette and T. Koenig, J. Org. Chem., 52, 641 (1987).

36.G. Kramer,¨ H. Kolshorn and H. Meier, Tetrahedron Lett., 35, 8353 (1994).

37.C. L. Hickson and H. McNab, J. Chem. Res. (S), 176 (1989).

38.R. A. Aitken, J. I. G. Cadogan and I. Gosney, J. Chem. Soc., Perkin Trans. 1, 1983 (1994).

39.R. A. Aitken, C. Boeters and J. J. Morrison, J. Chem. Soc., Perkin Trans. 1, 2473 (1994).

40.R. A. Aitken, C. Boeters and J. J. Morrison, Tetrahedron Lett., 36, 1303 (1995).

41.W. E. Billups and R. E. Bachman, Tetrahedron Lett., 33, 1825 (1992).

42.V. I. Perevalova, O. B. Bannikova, E. N. Deryagina and M. G. Voronkov, Zh. Org. Khim., 16, 399 (1980).

43.M. Kruger,¨ H. Dreizler, D. Preugschat and D. Lentz, Angew. Chem., Int. Ed. Engl., 30, 1644 (1991).

44.M. J. Plater, Tetrahedron Lett., 35, 801 (1994).

45.M. J. Plater, Tetrahedron Lett., 35, 6147 (1994).

46.C. W. G. Fishwick, P. W. Manley, K. R. Randles and R. C. Storr, Tetrahedron Lett., 26, 3053 (1985).

47.K. R. Randles and R. C. Storr, Tetrahedron Lett., 28, 5555 (1987).

48.A. Ohsawa, T. Kawaguchi and H. Igeta, Chem. Pharm. Bull., 30, 4352 (1982).

49.J. C. Barnes, W. Bell, C. Glidewell and R. A. Howie, J. Organomet. Chem., 424, 343 (1992).

50.N. R. Reartes, G. I. Yranzo, J. D. Perez,´ I. Iwataki and H. Adachi, J. Anal. Appl. Pyrol., 32, 161 (1995).

51.G. Zimmermann, J. Hoffmann and K. Schulz, Tetrahedron Lett., 37, 2399 (1996).

52.W. S. Trahanovsky and J. M. Ferguson, Organometallics, 11, 2006 (1992).

53.J. D. Perez´ and G. I. Yranzo, J. Org. Chem., 47, 2221 (1982).

532

R. Alan Aitken and Andrew W. Thomas

54.J. D. Perez´ and G. I. Yranzo, Bull. Soc. Chim. Fr., 473 (1985).

55.J. D. Perez,´ G. I. Yranzo and L. M. Phagouape,´ Bull. Soc. Chim. Fr., 129 (1986).

56.J. D. Perez´ and L. M. Phagouape,´ Int. J. Chem. Kinet., 19, 571 (1987).

57.J. D. Perez´ and L. M. Phagouape,´ Int. J. Chem. Kinet., 20, 217 (1988).

58.J. D. Perez´ and L. M. Phagouape,´ Int. J. Chem. Kinet., 20, 603 (1988).

59.J. D. Perez´ and L. M. Phagouape,´ Int. J. Chem. Kinet., 21, 227 (1989).

60.J. D. Perez,´ L. M. Phagouape´ and G. E. Davico, J. Phys. Org. Chem., 2, 225 (1989).

61.J. D. Perez´ and G. I. Yranzo, J. Anal. Appl. Pyrol., 16, 165 (1989).

62.G. I. Yranzo, personal communication.

63.J. D. Perez,´ G. I. Yranzo, J. L. G. de Paz and J. Elguero, J. Fluorine Chem., 63, 271 (1993).

64.J. D. Perez,´ G. I. Yranzo, M. A. Ferraris, R. M. Claramunt, C. Lopez´ and J. Elguero, Tetrahedron, 44, 6429 (1988).

65.J. D. Perez,´ G. I. Yranzo, J. Elguero, R. M. Claramunt and R. Garceran,´ Bull. Soc. Chim. Belg., 98, 349 (1989).

66.J. D. Perez,´ G. I. Yranzo, M. A. Ferraris, J. Elguero, R. M. Claramunt and D. Sanz, Bull. Soc. Chim. Fr., 128, 592 (1991).

67.J. D. Perez,´ G. I. Yranzo and D. A. Wunderlin, J. Org. Chem., 47, 982 (1982).

68.J. D. Perez,´ and D. A. Wunderlin, Int. J. Chem. Kinet., 18, 1333 (1986).

´

69. J. D. Perez,´ R. G. de Diaz and G. I. Yranzo, J. Org. Chem., 46, 3505 (1981). 70. J. D. Perez,´ and D. A. Wunderlin, J. Org. Chem., 52, 3637 (1987).

71. J. D. Perez,´ D. A. Wunderlin, T. L. Lemke and K. N. Sawhney, J. Heterocycl. Chem., 24, 1073 (1987).

72. G. E. Davico and J. D. Perez,´ J. Phys. Org. Chem., 3, 611 (1990).

73. A. Maquestiau, E. Puk and R. Flammang, Tetrahedron Lett., 27, 4023 (1986). 74. G. Bertrand and C. Wentrup, Angew. Chem., Int. Ed. Engl., 33, 527 (1994).

75. C. Wentrup, S. Fischer, A. Maquestiau and R. Flammang, Angew. Chem., Int. Ed. Engl., 24, 56 (1985).

76. C. Wentrup and J. Becker, J. Am. Chem. Soc., 106, 3705 (1984).

77. P. Kambouris, T.-K. Ha and C. Wentrup, J. Phys. Chem., 96, 2065 (1992).

78. B. F. Bonini, G. Maccagnani, G. Mazzanti, P. Pedrini, B. H. M. Lammerink and B. Zwanenburg,

J. Chem. Soc., Perkin Trans. 1, 2097 (1983).

79. P. L. Ashcroft, J. F. Barnes, K. Barron, R. Bradbury, J. Crosby, C. J. Joyce, M. M. Harding,

D. R. Holmes, J. A. Milner and R. M. Paton, J. Chem. Soc., Perkin Trans. 1, 601 (1986).

80.F. De Sarlo, A. Brundi, A. Goti, A. Guarna and P. Rovero, Heterocycles, 20, 511 (1983).

81.C. Wentrup, S. Fischer, H.-M. Berstermann, M. Kuzaj, H. Luerssen¨ and K. Burger, Angew. Chem., Int. Ed. Engl., 25, 85 (1986).

82.C. O. Kappe, R. Flammang and C. Wentrup, Heterocycles, 37, 1615 (1994).

83.M. J. Ellis, D. Lloyd, H. McNab and M. J. Walker, J. Chem. Soc., Chem. Commun., 2337 (1995).

84.R. Taylor, in The Chemistry of Functional Groups. Supplement B: The Chemistry of Acid Derivatives (Ed. S. Patai), Chap. 15, Wiley, Chichester, 1979, p. 860.

85.R. P. Hughes, X. Zheng, R. L. Ostrander and A. L. Rheingold, Organometallics, 13, 1567 (1994).

86.R. F. C. Brown, G. L. Burge and D. J. Collins, Aust. J. Chem., 37, 2295 (1984).

87.H. J. M. Gijsen, J. B. P. A. Wijnberg and A. de Groot, Tetrahedron, 50, 4745 (1994).

88.H. Bibas, M. W. Wong and C. Wentrup, J. Am. Chem. Soc., 117, 9582 (1995).

89.P.-S. Chen and C.-H. Chou, J. Chin. Chem. Soc., 41, 597 (1994); Chem. Abstr., 122, 80847 (1995).

90.P. A. Collins and D. Wege, Aust. J. Chem., 32, 1819 (1979).

91.K. B. Becker and R. W. Pfluger, Tetrahedron Lett., 3713 (1979).

92.D. L. S. Yokotsuji, W. P. Dailey, A. S. Kende, L. Birzan and K. Liu, J. Phys. Chem., 99, 15870 (1995).

93.W. S. Trahanovsky, and K. A. Koeplinger, J. Org. Chem., 57, 4711 (1992).

94.W. S. Trahanovsky and T. J. Cassady, J. Am. Chem. Soc., 106, 8197 (1984).

95.W. S. Trahanovsky, T. J. Cassady and T. L. Woods, J. Am. Chem. Soc., 103, 6691 (1981).

96.C.-H. Chou and W. S. Trahanovsky, J. Org. Chem., 51, 4208 (1986).

97.W. S. Trahanovsky, Y.-C. J. Huang and M.-K. Leung, J. Org. Chem., 59, 2594 (1994).

98.W. S. Trahanovsky, A. N. Amah and T. J. Cassady, J. Am. Chem. Soc., 106, 2696 (1984).

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of double-bonded functional groups