Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
120
Добавлен:
15.08.2013
Размер:
821.67 Кб
Скачать

GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS

2.119

The

geometric mean

 

of a set of

N

numbers is the

N th root of the product of the numbers:

 

 

 

 

 

 

pN

 

 

 

 

 

 

 

 

 

 

(2.7)

 

 

 

 

 

 

x 1x 2x 3

. . .x N

 

 

The

root mean square

(RMS) or quadratic mean of a set of numbers is defined by:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

RMS

p

 

 

 

qi 1

x i2 /N

(2.8)

 

 

 

 

 

x

2

2.3.4 The Normal Distribution of Measurements

 

 

 

The normal distribution of measurements (or the normal law of error) is the fundamental starting

 

point for analysis of data. When a large number of measurements are made, the individual mea-

 

surements are not all identical and equal to the accepted value

 

 

 

, which is the mean of an infinite

population or universe of data, but are scattered about

, owing to random error. If the magnitude

of any single measurement is the abscissa and the relative frequencies (i.e., the probability) of

 

occurrence of different-sized measurements are the ordinate, the smooth curve drawn through the

 

points (Fig. 2.10) is the

normal

or

Gaussian distribution

curve

(also the error curve

or probability

curve

). The term

error curve

arises when one considers the distribution of errors (

x ) about the

true value.

FIGURE 2.10

The Normal Distribution Curve.

2.120

 

 

 

 

 

 

 

 

 

 

 

SECTION 2

 

 

 

 

 

 

 

 

 

 

 

 

The breadth or spread of the curve indicates the precision of the measurements and is determined

 

 

by and related to the standard deviation, a relationship that is expressed in the equation for the

 

normal curve (which is continuous and infinite in extent):

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

p2

 

 

x

 

 

 

 

 

 

 

 

Y

1

 

 

 

 

exp

 

 

1

 

 

 

 

2

 

(2.9)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

is the standard deviation of the infinite population. The population mean

expresses the

magnitude of the quantity being measured. In a sense,

 

 

 

 

 

 

 

 

 

 

measures the width of the distribution, and

thereby also expresses the scatter or dispersion of replicate analytical results. When (

x

)/ is

replaced by the standardized variable

 

 

z, then:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

1

 

e (1/2) z2

 

 

 

 

 

(2.10)

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

The standardized variable (the

 

z statistic) requires only the probability level to be specified. It mea-

sures the deviation from the population mean in units of standard deviation.

 

 

 

Y

is 0.399 for the most

probable value,

. In the absence of any other information, the normal distribution is assumed to

 

apply whenever repetitive measurements are made on a sample, or a similar measurement is made

 

 

on different samples.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.26

a lists the height of an ordinate (

 

 

 

 

Y ) as a distance

 

z from the mean, and Table 2.26

b

the area under the normal curve at a distance

 

 

 

 

 

 

 

 

z from the mean, expressed as fractions of the total

 

area, 1.000. Returning to Fig. 2.10, we note that 68.27% of the area of the normal distribution curve

 

 

lies within 1 standard deviation of the center or mean value. Therefore, 31.73% lies outside those

 

limits and 15.86% on each side. Ninety-five percent (actually 95.43%) of the area lies within 2

 

standard deviations, and 99.73% lies within 3 standard deviations of the mean. Often the last two

 

areas are stated slightly different; viz. 95% of the area lies within 1.96

(approximately 2

) and

99% lies within approximately 2.5

. The mean falls at exactly the 50% point for symmetric normal

 

distributions.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5

The true value of a quantity is 30.00, and

 

 

 

 

 

 

for the method of measurement is 0.30.

 

What is the probability that a single measurement will have a deviation from the mean greater than

 

 

0.45; that is, what percentage of results will fall outside the range 30.00

 

 

 

0.45?

 

 

 

 

 

 

 

 

z

 

x

 

 

0.45

1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.30

 

 

 

 

From

Table 2.26

b the area under the normal curve from

 

 

 

 

 

 

 

1.5 to 1.5 is 0.866, meaning that

86.6% of the measurements will fall within the range 30.00

 

 

 

 

 

 

 

 

0.45 and 13.4% will lie outside this

range. Half of these measurements, 6.7%, will be less than 29.55; and a similar percentage will

 

 

exceed 30.45. In actuality the uncertainty in

 

 

 

 

z is about 1 in 15; therefore, the value of

z could lie

between 1.4 and 1.6; the corresponding areas under the curve could lie between 84% and 89%.

 

 

 

Example 6

If the mean value of 500 determinations is 151 and

 

 

 

 

 

15, how many results lie

between 120 and 155 (actually any value between 119.5 and 155.5)?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

119.5

 

151

 

 

2.10

 

 

 

Area: 0.482

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

155.5

 

151

 

 

0.30

 

 

 

 

 

 

 

 

0.118

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total area: 0.600

 

 

 

 

 

500(0.600)

 

 

300 results

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в папке Lange's Handbook of Chemistry (15th Edition)