Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Светодиод

.docx
Скачиваний:
29
Добавлен:
19.05.2015
Размер:
582.52 Кб
Скачать

Энергетические преобразования в светодиодах

Цель работы. 1.Познакомиться с устройством и физическими процессами, протекаю-щими при генерации света р-п –переходом. 2. Снять рабочий участок вольтамперной характеристики (ВАХ) светодиода и определить потребляемую электрическую мощность. 3. Познакомиться с расчетом электрической схемы питания светодиодов. 4. Установить зависимость силы света светодиода от величины протекающего через него тока и определить световую отдачу.

Оборудование. Источник постоянного тока, вольтметр, миллиамперметр, люксметр, набор светодиодов.

Краткая теория

Светодиоды или светоизлучающий диод (СИД, LED - англ. Light-emitting diode) — полупроводниковый диод, излучающий некогерентный свет при пропускании через него электрического тока. Первое известное сообщение об излучении света твёрдотельным диодом было сделано в 1907 году британским экспериментатором Генри Раундом, а первые работы по электролюминесценции в карбиде кремния выполнил в 1923 году советский физик Олег Лосев. Первый в мире практически применимый светодиод, работающий в световом (красном) диапазоне, разработал американский ученый Ник Холоньяк в 1962 году. Холоньяк, таким образом, считается «отцом современного светодиода».

В светодиоде энергия электрического тока преобразуется в световую энергию. Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода, то есть в контакте двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют раз­ными примесями: по одну сторону акцепторными, по другую — донорными. Но не всякий p-n-переход излучает свет. Ключевых причин две. Во-первых, ширина запрещенной зоны в активной обла­сти светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излу­чения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кри­сталл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и прихо­дится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изуче­ние которых российский физик академик Жорес Алфе­ров получил Нобелевскую премию 2000 года.

За последние годы создано огромное множество различных светоизлучающих диодов. Конструкция светодиода определяет направление, пространственное распределе-ние, интенсивность излучения, электрические, тепловые, энергетические и другие характеристики излучения полупроводникового кристалла. По потребляемой электричес-кой мощности светодиоды условно делят на маломощные (до 1 Вт), мощные (свыше 1 Вт) и сверхмощные (более 10 Вт). На рисунках 1а и 1с показаны устройства маломощного и мощного светодиодов.

Основу светодиодов составляет полупроводниковый кристалл, расположенный на проводящей подложке, служащей отражателем (рефлектор), направляющим свет в одну сторону. К кристаллу и подложке подводится электрическое напряжение, через анод и катод. От внешних воздействий кристалл защищен корпусом из эпоксидной смолы или поликарбоната. Верхняя часть корпуса, как правило, делается в виде купола с определенной кривизной и исполняет роль линзы, формирующей световой пучок.

При разнообразии форм корпусов, в которых установлены излучающие кристаллы, существенным отличием является то, что в мощных светодиодах кристалл устанавливает-ся на теплоотводящей металлической подложке. На рисунке 1b показан внешний вид цилиндрического маломощного светодиода и обозначение светодиодов на электрических схемах. У светодиодов всех типов различают несколько основных параметров: 1) тип корпуса, под которым понимают форму, диаметр и цвет колбы (линзы); 2) электрические - типовые (рабочие) ток и падение напряжения; 3) световые - длина волны излучения, сила света и угол рассеяния, световая отдача.

Вольтамперная характеристика. Полную информацию об электрических свойствах светодиода дает его вольтамперная характе-ристика (рис.2). При прямом подключении к источнику постоянного тока светодиод будет излучать свет в интервале напряжений от Umin до Umax, то есть для светодиода рабочим является участок ab вольтамперной характе-ристики 1. В случае превышения предельного напряжения Umax наступает пробой p-n пере-хода и светодиод выйдет из строя. Пробой наступит также в случае обратного включения светодиода к напряжению, превышающему Umax,обр. При обратном включении светодиода через него протекает малый ток утечки ioбр, светодиод при этом не излучает света. Вид вольтамперной характеристики зависит от природы полупроводников, составляющих светодиод. На рисунке 2 пунктирной линией 2 показана вольтамперная характеристика светодиода, излучающего в более коротковолновом диапазоне, чем 1 (сплошная линия).

Электрический ток через p-n переход обусловлен упорядочным движением электронов и дырок, а его величина определяется уравнением: . , (1)

где U – внешнее напряжение, приложенное к p-n переходу с учетом знака, is- значение, к которому стремится обратный ток при увеличении обратного напряжения, е – заряд электрона, k –постоянная Больцмана, Т – абсолютная температура.

Из уравнения (1) следует, что даже незначительное превыше-ние приложенного прямого напряжения к p-n переходу по отношению к Umax, приводит к значительному росту тока через него. Кроме того, при прохождении прямого тока выделяется энергия в виде теплоты, увеличивается концентрация электронов и дырок в полупроводнике, сопротивление p-n перехода уменьшается, а величина прямого тока бесконтрольно растет. Для стабилизации электрических параметров светодиода, его надо подключать к источнику постоянного тока через токоограничивающий резистор R (рис.3).

Зная критические параметры светодиода Umax и imax можно найти величину токоограничивающего резистора по формуле

где Е – ЭДС источника тока. (2)

Пример. Имеется светодиод с рабочим напряжением 3 В и рабочим током 20 мА. Необходимо подключить его к источнику с Е= 5 В. Сопротивление токоограничивающего резистора, вычисленное по формуле (2), равно R = 100 Ом. Так как резисторы имеют разброс параметров до ±20% от номинальной величины, то для безопасности светодиода разумно взять резистор величиной R ≈ 120 - 150 Ом.

Фотометрические характеристики светодиодов. Основной энергетической характери-стикой света считается световой поток Ф – это мощность светового излучения, измеряемая в люменах (лм). По международному соглашению люмен – это 1/683 ватта светового монохроматического света с длиной волны 555 нм, соответствующей максимуму кривой спектральной чувствительности глаза. Благодаря оптической системы светодиода, световое поле цилиндрического светодиода имеет примерно конусообразную форму, с небольшим углом рассеяния. Следовательно, если все излучение светодиода направить по нормали, т.е. α=0, на фотоприемную поверхность люксметра и измерить освещенность Е, то можно определить световой поток по формуле

(3)

где: S – освещенная площадь фотоприемной поверхности люксметра; Е – освещенность, выраженная в люксах (лк). Следует иметь ввиду, что незначительная часть излучения кристалла светодиода теряется на отражение и поглощение веществом колбы.

Вычислив потребляемую светодиодом электрическую мощность, как произведение силы тока на приложенное к светодиоду напряжение – P = i U, определим световую отдачу светодиода:

(4)

Если полный световой поток Ф разделить на телесный угол ω, в котором сосре-доточено излучение светодиода, то можно оценить осевую силу света I светодиода:

(5)

Сила света в СИ измеряется в канделах (кд). Из (5) следует, что чем меньше телесный угол, в котором заключен один и тот же световой поток, тем больше осевая сила света. Для стандартных 5 миллиметровых сверхярких светодиодов величина осевой силы света колеблется в пределах 200-5000 мКд. Сила света мощных светодиодов составляет десятки канделл.

Телесный угол ω равен отношению площади S, вырезаемой этим углом на сфере произвольного радиуса R, к квадрату этого радиуса – ω = S/r2 (рис.4). Площадь измеряют по среднему диаметру d светящегося пятна – S = πd2/4. В международной системе единиц СИ телесный угол измеряется в стерадианах (сокращенно ср).

Если источник света светит равномерно по всему пространству, то есть в телесном угле 4π (так как площадь сферы равна 4πr2), то сила света такого источника равна I=Ф/4π. Одна кандела – это сила света источника, излучающего световой поток 1 лм в телесном угле 1ср. Примерно такую силу света имеет обычная стеариновая свеча (отсюда ясно, что световой поток такой свечи равен примерно 12,56 лм).

Описание измерительной установки

В состав измерительной установки входят (рис.5): источник стабилизированного постоянного напряжения ИП; вольтметр V; миллиамперметр mA; люксметр Л с фото-приемником ФП; светодиод СД.

Регулировку подаваемого на светодиод СД напряжения осуществляют потенциомет-ром R1, а величина этого напряжения равна UСД = U – i (R+RmA), где: U – показания вольтметра; i – показания миллиамперметра; R – сопротивление токоограничивающего резистора; RmA – сопротивление миллиамперметра. Фотоприемник ФП люксметра Л расположен на расстоянии, при котором весь световой поток светодиода приходится на его светоприемную поверхность.

Выполнение работы

Измерения. 1. Собрать схему (см.рис.5). К клеммам ab подсоединить красный светодиод. Вычислить цены делений стрелочных приборов.

2. По величине токоограничивающего резистора R и сопротивления миллиамперметра RmA записать их суммарное сопротивление (R+ RmA). Регулятор напряжения (потенцио-метр) установить в нулевое положение.

3. Включить источник питания в сеть 220В. Увеличивать с помощью потенциометра R1 выходное напряжение до зажигания светодиода. Записать минимальные значения тока imin и напряжения Umin (Umin = U – imin (R+RmA)).

4. Установить фотоприемник ФП люксметра на таком расстоянии от светодиода, чтобы основной световой поток светодиода приходился на приемную часть фотоприемника. Несколько раз измерить диаметр светового пятна и вычислить его среднее значение <d>. По среднему диаметру пятна вычислить его площадь (S = πd2/4).

5. Измерить расстояние r от излучающей поверхности светодиода до фотоприемника люксметра и оценить телесный угол ω = S/r2, в котором сосредоточено излучение. Включить люксметр.

6. Диапазон токов от imin до imax ≤ 20 mA разбить минимум на 10 частей. Для каждого значения тока измерить величины напряжения U и освещенности E. Данные эксперимента занести в таблицу 1. Таблица 1

№, п/п

1

2

3

4

5

6

7

8

9

10

i, mA

U, B

E, Лк

7. К клеммам ab подсоединить синий (зеленый) светодиод и повторить пункты 2 - 6.

Обработка измерений. 8. Перенести из таблицы 1 в таблицу 2 все значения тока.

9. Для каждого значения тока вычислить падение напряжения на светодиоде, по формуле: UСД = U – i (R+RmA). Для каждого значения тока вычислить потребляемую светодиодом электрическую мощность (P = i UСД).

10. Для каждого значения тока вычислить: по формуле (3) световой поток Ф; по формуле (4) световую отдачу η; по формуле (5) осевую силу света I. Результаты вычислений занести в таблицу 2.

Таблица 2

№, п/п

1

2

3

4

5

6

7

8

9

10

i, мA

UСД, B

Р, мВт

Ф, лм

η,лм/Вт

I, Кд

11. Построить графики: рабочий участок ab вольтамперной характеристики; зависимости световой отдачи от тока – η(i); зависимости осевой силы света от тока – I(i).

12. Указать на источники погрешностей и оценить их величину. По выполненной работе сделать вывод.

Контрольные вопросы