Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

14-es / Высшая математика (РТФ) / умк_Вакульчик_Опред интеграл

.pdf
Скачиваний:
50
Добавлен:
18.05.2015
Размер:
3.63 Mб
Скачать

Очевидно, что и работа, совершаемая силой Р(х), будет некоторой функцией А(х). Допуская, что при подъеме шара еще на малую высоту dx сила Р(х) остается неизменной, найдем приближенную величину прираще- ния работы:

DA » P ( x)dx = ( Pш - Pв )dx = p3 (4R 3 (d -1) - x 3 + 3Rx 2 )dx = dA

Интегрируя dA в пределах от x = 0 до x = 2R, найдем работу A2 , ко-

торую надо совершить, чтобы шар, поднятый со дна бассейна до поверх- ности, полностью извлечь из воды:

 

=

p

2R

(4R 3 (d -1) - x 3 + 3Rx 2 )dx =

p

 

3 (d -1)x -

x

4

+ Rx 3

 

 

2R =

 

 

A2

4R

 

 

 

 

 

 

 

 

3

 

3

 

4

 

 

 

0

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=4 pR 4 (2d -1) .

3

Вся искомая работа:

A = A1 + A2 = 4 pR 3 (R + (d -1)H ) =

3

=4 p × 27(0,3 + (2 -1) ×1, 4) 600,4π (Дж). 3

Пример 7.19.7. (повышенный уровень сложности). Прямоуголь-

ный резервуар с площадью горизонтального сечения S = 6 м2 наполнен водой до высоты Н = 5 м. Определить время, в течение которого вся вода вытечет из резервуара через небольшое отверстие в его дне площадью

S1 = 0,01 м2 , если принять,

что ско-

рость

истечения

воды

равна

 

 

 

0,6 2gh , где h высота уровня воды

над отверстием, g

ускорение силы

тяжести.

 

 

 

Решение. Согласно общей схе-

 

ме I, разобьем искомое время Т на

 

большое число маленьких промежут-

 

ков t1 , t2 ,…, t n и пусть за каж-

 

дый такой промежуток уровень воды

 

в резервуаре понижается на величину

 

Dx = H (рис. 7.19.6).

Рис. 7.19.6

n

 

61

Допустим, что в течение каждого малого промежутка времени ti

скорость истечения воды через отверстие в дне остается постоянной, рав-

ной ее значению в начале промежутка 0,62g(H xi ) . Тогда прибавление в объеме воды, вытекающей с такой скоростью через отверстие в дне за промежуток ti , равно объему опорожнившейся за этот же промежуток части резервуара. В результате получим приближенно равенство

 

 

 

0,6S1

 

2g(H xi )

ti

S x .

 

 

 

 

S

x

 

 

 

 

 

 

Откуда

ti

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,6S1 2g(H xi )

 

 

 

 

 

 

Приближенное значение всего искомого времени Т будет равно

 

 

 

 

n

 

n

 

S

x

 

 

 

 

T =

ti

 

 

 

 

 

,

(**)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i=1

 

i=1 0,6

2g(H xi )S1

 

где по условию задачи точки xi заключены на отрезке [0;H].

Убедившись, что с возрастанием n погрешность полученного при- ближенного значения Т стремится к нулю, найдем точное значение Т как предел интегральной суммы (**) при n → +∞ , т. е. как соответствующий определенный интеграл:

 

 

 

 

H

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

2S

 

0 =

S

 

 

 

2H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T =

 

 

( H x)

2 dx =

 

( H x)

 

 

 

 

.

 

 

 

2

 

 

 

 

 

 

0,6S1

 

 

 

 

 

 

0,6S1

2g

0

 

 

 

0,6S1 2g

 

 

 

 

H

 

 

g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Подставляя числовые значения параметров S = 6, H = 5,

S1 = 0,01,

g = 9,81, получим

T 1019 с ≈ 16,99 мин.

Если бы убыль воды в резервуаре постоянно возмещалась, т. е. если бы уровень воды в нем оставался неизменным, то и скорость истечения во-

ды была бы постоянной, равной 0,62gh . В этом случае, в каждую секун-

ду через отверстие в дне резервуара будет вытекать объем воды 0,62gH .

Поэтому при указанном предположении объем воды, вмещающийся в ре-

зервуаре, вытечет из него за время T =

1

 

S

 

2H

.

 

 

 

 

1

2

 

0,6S1

 

g

 

 

 

Сопоставление этого результата с предыдущим показывает, что время истечения Т без возмещения убыли воды в резервуаре, в два раза больше времени истечения T1 при постоянном возмещении убыли воды: T = 2T1 .

62

Пример 7.19.8. Цилиндр высотой H = 1,5 м и радиусом R = 0,4 м, наполнен газом под атмосферным давлением (10330 кг/м2), закрыт порш- нем. Определить работу, затрачиваемую на изотермическое сжатие газа при перемещении поршня на расстояние h = 1,2 м внутрь цилиндра.

Решение. При изотермическом изменении состояния газа, когда его температура остается неизменной, зависимость между объемом V и давле- нием р газа выражается формулой pV = c = const (закон Бойля Мариотта).

Поэтому, если поршень будет

 

 

вдвинут на х м

внутрь цилиндра

 

 

(рис. 7.19.7), то давление p(x) газа на

 

 

единицу площади поршня будет

 

 

p(x) =

c

=

c

 

 

 

 

,

 

 

V ( x)

S ( H x)

 

 

а давление на всю площадь S поршня

 

Рис. 7.19.7

 

 

 

 

 

P(x) = Sp(x) =

c

 

 

 

 

.

 

 

 

 

 

 

 

 

 

H x

Полагая, что работа, затрачиваемая при вдвижении поршня на х м, есть некоторая функция А(х), и допуская, что при дальнейшем вдвижении поршня на малое расстояние dx испытываемое им давление p(х) остается неизменным, найдем приближенную величину приращения (дифференци- ал) функции А(х):

 

c

A P(x)dx =

 

dx = dA .

 

 

H x

Всей искомой работе А соответствует изменение х от 0 до h, поэтому

h

dx

 

 

 

 

 

h = c ln

 

H

 

 

A = c

= −c ln

 

H x

 

 

 

 

.

 

 

H x

H h

0

 

 

 

 

 

0

 

 

 

 

 

h = 1,2 м, p0 =10330 кг/м2 найдем

При H = 1,5 м, R = 0,4 м,

V0 = πR 2 H = 0, 24π м3; с = p0 ×V0 = 2479, 2p .

А122951,7 Дж.

7.20.Приближенные вычисления определенного интеграла

(для самостоятельного изучения)

На практике в процессе использования определенного интеграла встречаются ситуации, когда применение формулы Ньютона Лейбница бывает проблематичным из-за весьма сложного вычисления первообраз- ной для подынтегральной функции (например, для дробно-рациональной

63

функции и т. п.) либо применение указанной формулы становится невоз- можным (например, подынтегральная функция задана графически или таб- лично). В таких случаях прибегают к приближенным формулам, с помо- щью которых определенный интеграл вычисляется с наперед заданной точностью. Рассмотрим наиболее часто используемые формулы прибли- женного вычисления определенного интеграла (прямоугольников, трапе- ций, Симпсона), вывод которых осуществим с использованием формулы Тейлора и метода неопределенных коэффициентов.

Напомним, что если функция f (x) непрерывна и имеет на отрезке [a; b] непрерывные производные до n-ного порядка включительно, а в каждой внутренней точке отрезка имеет конечную производную (n + 1)-го порядка, то при x [a; b] справедлива следующая формула Тейлора:

 

 

f ( x) = f (a) + f (a)( x a) + f ′′(a) ( x a)2

+ ...

 

 

 

 

 

 

 

 

 

 

2!

 

 

(7.20.1)

 

 

... + f (n) (a) ( x a)n

+ f (n+1) (ξ)

( x a)n+1

 

 

 

 

 

 

 

 

 

n!

 

 

 

(n + 1)!

 

 

 

где

ξ = a + θ(x a) и 0 < θ < 1.

 

 

 

 

 

 

 

 

 

 

Если положить в этой формуле а = 0, то получим формулу Маклорена:

 

 

 

x2

 

x3

 

xn

 

xn+1

 

f ( x) = f (0)

+ f (0) x + f ′′(0)

 

+ f ′′′(0)

 

+ ... + f (n) (0)

 

+ f (n+1) (ξ)

 

,

2!

3!

n!

(n + 1)!

где

ξ = θx,

0 < θ < 1.

 

 

 

 

 

 

 

 

 

Последний член в формуле Тейлора называется остаточным членом формулы Тейлора в форме Лагранжа и обозначается Rn ( x) :

Rn ( x) = f (n+1) ((a + θ)( x a)) ( x a)n+1 , n + 1 !

соответственно остаточный член в формуле Маклорена имеет вид

R ( x) =

f (n+1) (θ x)

 

xn+1.

 

n

(n + 1)!

 

 

Формулу (7.20.1) можно записать в виде

f ( x) = f (a) + f (a)( x a) + ... + f (n) (a ) ( x a)n + o(( x a )n ), n!

где o(( x a)n ) бесконечно малая порядка выше n-ного по сравнению с

(x – a ).

64

Эта форма остаточного члена была указана Пеано. В частности, при а = 0 имеем

f ( x) = f (0) + f ¢(0)( x) + f ¢¢(0)

x2

... + f (n) (0)

x

n + o (xn ).

 

 

2!

 

n!

Получим формулы приближенного вычисления определенных инте- гралов (прямоугольников, трапеций, Симпсона), используя формулу Тей- лора и метод неопределенных коэффициентов.

1. Формула прямоугольников. Рассмотрим задачу: пусть требуется

вычислить

bf ( x)dx , где ¦(x) непрерывна на [a, b] и имеет непрерывную

 

a

производную на промежутке (a, b) (считаем, что первообразная не выража- ется через элементарные функции или этот интеграл удобнее вычислить приближенно).

Разобьем отрезок интегрирования на n равных частей:

 

x0 = a < x1 < x2 <… < xn = b,

где xi = x0

+ ih, i = 0, 1, …, n, h =

b a

.

 

 

 

n

Тогда, bf ( x)dx =

a

x1

Рассмотрим интеграл

x0

x1

 

x2

xn

f ( x)dx + f ( x)dx + ... +

f ( x)dx .

x0

 

x1

xn−1

f ( x)dx .

Подберем коэффициент A так, чтобы

x

f ( x)dx = Af ( x0 ) × h + r1 .

 

1

(7.20.2)

x0

 

 

 

Первое слагаемое в (7.20.2) дает приближенное значение определенного интеграла, а второе - погрешность. Для определения коэффициента А, посту- паем следующим образом: f ( x) представляем формулой Тейлора с остаточ-

ным членом в форме Лагранжа, ограничившись первым порядком малости.

 

 

f ( x) = f ( x

)

+ f ( x + q × h) ×( x - x

), 0 < q <1.

 

 

 

 

 

 

 

0

 

 

 

 

0

 

1

 

 

 

 

 

0

 

 

 

1

 

 

 

Воспользовавшись обобщенной теоремой о среднем, будем иметь

 

 

 

x1

f ( x

 

) + f ¢( x

 

+ q

 

× h) ×( x - x

 

) dx =

 

 

 

 

 

 

 

0

0

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x0

 

 

 

 

 

 

( x - x

 

 

)2

 

 

 

 

 

 

 

 

f '(x

 

) × h 2

 

 

 

 

 

 

x

 

f '(x

 

)

0

 

x1

 

( x

 

) × h +

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= f (x

0

)(x - x

0

)

1 +

1

 

 

 

 

 

 

= f

0

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x0

 

 

 

 

 

2

 

 

 

 

x0

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где x0 < ξ1 < x1 , x1 x0 = h .

65

 

 

 

 

x1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f '( x0 + q1h) ×( x - x0 )dx = f '(x1)

( x - x0 )dx

x0 < ξ1 < x1 .

 

 

 

 

x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Подставляя в (7.20.2), получим равенство

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x

0

) × h +

f '(x1 )× h

2 = A × f (x

0

) × h + r ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

отсюда,

A =1,

 

 

r

 

£

f '(x1 )× h 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аналогично имеем для произвольного интервала

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi

= f

( xi−1 ) × h + r1i ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x)dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi−1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r i

 

 

 

£

 

 

 

f '(xi )

 

× h 2 ,

 

i =

 

 

 

, x

 

< ξ

 

< x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

 

 

 

 

 

 

 

 

1, n

i−1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отсюда,

f (x)dx = h[ f (xo ) + f (x1) + f (x2 ) + ... + f (xn-1)] + R1 ,

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

£

h 2

(

 

f '(x1 )

 

 

+

 

f '(x2 )

 

+ ...+

 

f

('xn )

 

),

 

 

 

 

 

 

 

 

 

 

 

где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= (a - b)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т. е.

 

R

 

 

£

h 2

n × max

 

 

f '( x)

 

max

 

f '( x)

 

=

h

 

(b - a ) max

 

f ('x)

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

2

 

 

 

 

x [a,b]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n

 

 

x [a,b]

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x [a,b]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, мы получили формулу прямоугольников для вычис-

ления определенного интеграла.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

Формула трапеций. Вернемся к исходной задаче. Рассмотрим за-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дачу: необходимо вычислить f (x)dx , где ¦(x) непрерывна на [a, b] и име-

 

 

a

 

 

ет непрерывные производные до 3-го порядка на промежутке (a, b).

 

Разобьем отрезок интегрирования на n равных частей:

 

 

x0 = a < x1 < x2 … < xn = b,

 

где xi = x0 + ih,

i = 0, 1, …,

n, h =

b - a

.

 

 

 

 

 

 

 

 

n

 

 

b

x1

 

x2

xn

 

Тогда, f (x)dx =

f (x)dx + f (x)dx + ... +

f (x)dx .

 

a

xo

 

x1

xn−1

 

Рассмотрим

 

 

 

 

 

 

x1

 

 

 

 

 

 

f (x)dx = h[ Af (x0 ) + Bf (x0 + h)] + r2 .

(7.20.3)

 

x0

 

 

 

 

 

66

Функции f (x)

 

и f ( x0 + h)

 

 

представим по формуле Тейлора:

 

 

 

 

 

f ( x) = f (x0 ) + f ¢( x0 )( x - x0 ) +

f ′′( x0 + q1 × h)

( x - x0 )

2

,

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ( x + h) = f ( x0 ) + f ¢( x0 )h +

 

 

f ′′( x

0

 

 

+ q

2

 

× h)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h 2 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 < θ1 < 1,

 

 

0 < θ 2 < 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Полученные разложения подставим в (7.11.3) и получим

 

 

 

 

 

 

 

 

 

 

x1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

''( x0 + q1 × h)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

[ f ( x0 ) + f '( x0 )( x - x0 ) +

 

 

 

 

( x - x0 )

 

]dx =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ''( x0 + q2h)

 

 

 

 

 

 

 

 

 

 

 

= h[ Af ( x

0

)

+ Bf (x

0

) + Bf ¢( x

 

 

) × h + B

h

2 ] + r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

или

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ''(x1 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ( x0 )h + f '( x0 ) ×

h 2

+

 

×

h3

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= A × f ( x

0

) × h + B × f ( x

0

) × h + Bf '( x

0

) × h 2

+ B ×

 

f ''( x0 + q2 × h)

h

3 + r ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

x0 < ξ1 < x1,

 

 

0 < θ 2 < 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приравнивая коэффициенты при одинаковых степенях h:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 :1 = A + B

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

, A =

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h 2 :

1

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= B

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тогда,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ( x)dx =

1

h

f

( x

 

) + f

( x

)

+ r ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ¢¢(x1 )

 

 

f ¢¢( x0 + q2h)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

= h3

 

-

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

h3

 

 

 

 

2

( f ¢¢(x1 ) - f ¢¢( x0 + q2h) - f ¢¢( x

0 + q2h))

 

£

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

£

 

h3

 

 

 

 

f ¢¢( x0 + q2h)

 

+ 2

 

f

¢¢¢(x2 )(x1 - x0 - q

2h)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Здесь мы воспользовались теоремой Лагранжа:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ′′(x1 ) - f ′′( x0 + q2h) = f ′′′(x2 )(x1 - x0 - q2h),

 

 

 

 

 

 

x1 < x2 < x0 + q2h ,

т. к.

f ′′′(x

2

)(x

1

- x

0

- q

2

h) = 0(h) , то

 

r

 

 

£

h3

 

 

f ¢¢

(c

 

)

 

,

 

где x0 < с1 < x1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

12

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

67

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi

 

( x)dx =

 

1

 

 

f

( x

 

 

 

 

) + f ( x

)

+ r i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аналогично,

 

 

 

f

 

h

 

−1

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

i

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi−1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

i

 

£

 

h3

 

 

f ¢¢(c

)

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

12

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Поэтому

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

f (x)dx =

 

1

h[ f (x

 

) + 2 × ( f (x ) + f (x

 

) + f (x

 

) + ... + f (x

 

 

)) + f (x

 

 

)] + R

 

=

 

 

 

 

n−1

 

 

 

 

 

 

 

0

2

3

n

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= h

 

f (x

0 ) + f (xn )

+ f (x ) + f (x

 

) + f (x

 

) + ... + f (x

n−1

)

 

+ R

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

£

h3

 

 

f

¢¢(c

 

 

) + f

¢¢(c

 

 

) + ... +

 

 

f ¢¢(c

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

 

2

 

 

 

 

 

2

 

n

 

 

или

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

2

 

£

h3

 

 

× n × max

 

 

f ¢¢( x)

 

= (b - a)3

max

 

 

f ¢¢( x)

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

[

 

 

]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12n

2

 

 

[

 

]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x a,b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x a,b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

Формула Симпсона. Вернемся к исходной задаче: необходимо

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

где ¦(x) непрерывна на [a, b]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

вычислить f (x)dx ,

и имеет непрерывные

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

производные до 5-го порядка на промежутке (a, b).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Как и в предыдущих примерах, разобьем отрезок интегрирования

на m равных частей, но предположим, что m - четное число

m = 2n:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xo = a < x1 < x2 < … < x2n = b,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где xi = x0 + ih,

 

 

i = 0, 1, …, 2

 

n, h =

b - a

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

x4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

2n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тогда, f (x)dx =

 

f (x)dx

+ f (x)dx

+ ... +

 

 

f (x)dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

x0

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2n−2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заменим дугу линии y = f (x) , соответствующую [x0 , x2 ] , дугой па-

раболы, которая проходит через точки:

( x0 , f (x0 )); ((x0 + h), f ( x0 + h)) ; ((x0 + 2h), f (x0 + 2h)) .

Подберем А, В, С так, чтобы

x0 +2h

f ( x)dx = h Af ( x

 

) + Bf ( x

 

+ h) + Cf ( x

 

+ 2h)

+ r .

0

0

0

 

 

 

 

 

4

x0

 

 

 

 

 

 

 

 

 

Представляя

f (x) , f ( x0 + h) ,

f ( x0 + 2h) ,

по формуле Тейлора,

68

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ' x

0 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ''(x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ( x) = f ( x0 ) +

 

 

(

 

 

 

( x

 

- x0 ) +

 

 

)( x - x0 )2 +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f '''(x

0

 

)

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

f (4) ( x

0

 

 

+ q × h)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

( x

 

- x0 )

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( x - x0 )

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ( x0 + h) = f ( x0 )

 

 

 

 

f '( x

0

 

)

 

 

 

 

 

 

 

f

 

 

''( x

0

)

 

 

 

 

 

 

 

 

 

 

 

 

 

f '''(x

0

 

)

 

 

 

 

 

 

 

 

 

f (4) ( x

0

+ q

1

× h)

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

h +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h 2

+

 

 

 

 

 

 

 

 

 

 

 

 

 

h3

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

4 ,

 

 

 

 

 

1!

 

 

 

 

 

 

 

 

 

2!

 

 

 

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

 

 

0 ) 2h +

 

 

(

 

 

0 ) (2h)2 +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ( x0 + 2h) = f ( x0 )

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ' x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

''x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f '''(x

0

 

)

 

 

 

 

 

 

3

 

 

 

 

 

 

 

f (4) ( x

0

 

+ q

2

× h)

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

(

2h)

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2h)

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где 0 < θ < 1,

 

 

0 < θ1 < 1, получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x0 +2h

 

 

 

 

 

 

 

 

 

 

f '(x

0

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ''(x

0

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

 

'''(x

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

[ f (x0 ) +

 

 

 

 

 

 

 

 

 

 

 

(x - x0 ) +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x - x0 ) 2 +

 

 

 

 

 

 

 

 

 

 

0

 

 

 

(x

- x

0 ) 3 +

 

 

 

 

 

 

 

 

 

1!

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

f (4)

( x0 + q × h)

( x

- x0 )

4

]dx

= f ( x

0 )2h + f '( x

0 )

(2h)

2

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ''(x

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

'''(x

 

 

 

 

) (2h

4

 

 

 

 

 

 

f

 

(4)

 

x( ) (2h

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

) (2h ) f

 

 

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

)

 

 

 

где x0 < ξ1 < x0 + 2h .

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

2

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

4!

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тогда,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2h)

2

 

 

 

 

 

 

 

f ''(x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

f

 

 

 

'''(x

 

 

 

 

) (2h

4

 

 

 

 

 

 

f

 

(4)

x(

 

) (2h

5

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

) (2h )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x0 )2h + f '(x0 )

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

=

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

4!

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bf ''(x

0

 

)

 

 

 

 

 

 

 

 

 

 

 

 

f '''(x

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

= h[ Af (x0 ) + Bf (x0 ) + Bf '(x0 )h +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

2 + B

 

 

 

 

 

 

 

 

 

0

 

h3

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

 

 

 

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (4) (x

0

 

+ q h)

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ''(x

0

 

)

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

+B

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

h

 

 

 

 

+ Cf (x0 )

+ Cf '(x0 )2h + C

 

 

 

 

 

 

 

 

 

 

 

 

(2h )

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

 

 

 

 

 

 

 

 

 

 

 

+C

f ''( x0 )

(2h)2 + C

f

 

 

'''( x0 )

(

 

2h)3 + B

f (4) ( x0 + q2h)

(2h)4 ] + r .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приравниваем коэффициенты при одинаковых степенях:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2h :1 =

 

A

 

+

 

 

B

+

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

B

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h : (2h)

2

:

 

 

=

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

4

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2h)

3

:

 

 

1

 

 

=

 

 

B

 

+

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

16

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

69

 

 

 

Откуда,

A =

1

, B =

4

,

 

 

 

 

C =

1

 

 

 

 

и, следовательно,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ( x)dx =

h

f ( x) + 4 f ( x)

+ f ( x) + r4 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2h)

5

 

 

 

 

 

 

 

f

(4) (x

1

)

 

 

 

 

 

 

 

 

 

 

f (4) (x

0

+ q h)

 

 

f (4) (x

0

+ q

2

h)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

 

 

r

 

=

 

 

 

 

 

 

 

 

 

×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

1

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

4!

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 ×8

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

(2h)5

 

×

 

 

1

 

 

 

24 f (4) (x

1

) - 5 f (4) (x

0

+ q h) - 20 f

(4) (x

0

+ q

2

h)

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4!

 

120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2h)5

 

 

 

 

 

 

 

 

 

 

 

 

 

(4) (x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4) (x

 

+ q h) - f (4) (x

 

 

 

 

h)) - f (4) (x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

×

24( f (4) (x

) - f

0

 

 

+ q

2

h)) - 5( f

0

0

+ q

0

+ q

h)

£

 

 

 

 

 

4!×120

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

×(

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

),

£

(2h)5

 

 

 

f (4) (x0 + q2h)

 

+

 

24 f (4) (x1)(x1 - x0 - q2h) - 5 f (5) (x3 )(q1 - q2 )h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4!×120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

для

x0 < ξi < x2

,

 

 

 

 

i = 1, 2,

 

 

 

 

3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Так как

24 f (4) (x1 )(x1 - x0 - q2h) - 5 f (5) (x3 )(q1 - q2 )h = o(h) , то

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

£

 

 

(2h)5

 

 

 

f (4) ( x

0

+ q

2

h)

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

4!×120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Для произвольного интервала имеем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi

f (x)dx =

h

[ f (xi−2 ) + 4 f (xi−1) + f (xi−2 + 2h)] + r i 4 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi−2

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

 

 

r i

4

 

£

(2h)5

 

 

 

f (4) (ci )

 

,

 

 

 

 

xi−2 < ci < xi .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Суммируя, получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

f (x)dx =

h

[ f (x0 ) + f (x2n ) + 2( f (x2 ) + f (x4 ) + ...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

... + f (x2n−2 ) + 4( f (x1) + f (x3 ) + ... + f (x2n−1))] + R4.

Это формула Симпсона с остаточным членом:

R

 

£

h5

× n × max

 

f (4) ( x)

 

=

 

(b - a)5

 

 

 

max

 

f (4) ( x)

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

90

[

]

 

 

 

 

2 ×90 × 2

4

× n

4

[

]

 

 

 

 

 

 

x a,b

 

 

 

 

 

 

 

 

 

 

 

 

 

x a,b

 

 

 

 

 

 

 

 

=

h 4

(b - a)

max

]

 

f (4) ( x)

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

180

 

 

 

[

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x a,b

 

 

 

 

 

 

 

 

 

 

 

 

 

70