Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Теория информации / Cover T.M., Thomas J.A. Elements of Information Theory. 2006., 748p

.pdf
Скачиваний:
214
Добавлен:
09.08.2013
Размер:
10.58 Mб
Скачать

BIBLIOGRAPHY 705

[297]F. Jelinek. Probabilistic Information Theory. McGraw-Hill, New York, 1968.

[298]F. Jelinek. Statistical Methods for Speech Recognition. MIT Press, Cambridge, MA, 1998.

[299]R Jozsa and B. Schumacher. A new proof of the quantum noiseless coding theorem. J Mod. Opt., pages 2343 – 2350, 1994.

[300]G. G. Langdon, Jr. A note on the Ziv – Lempel model for compressing individual sequences. IEEE Trans. Inf. Theory, pages 284 – 287, Mar. 1983.

[301]J. Justesen. A class of constructive asymptotically good algebraic codes.

IEEE Trans. Inf. Theory, IT-18:652 – 656, 1972.

[302]M. Kac. On the notion of recurrence in discrete stochastic processes. Bull. Am. Math. Soc., pages 1002 – 1010, Oct. 1947.

[303]T. Kailath and J. P. M. Schwalkwijk. A coding scheme for additive noise channels with feedback. Part I: No bandwidth constraints. IEEE Trans. Inf. Theory, IT-12:172 – 182, 1966.

[304]T. Kailath and H. V. Poor. Detection of stochastic processes. IEEE Trans. Inf. Theory, pages 2230 – 2259, Oct. 1998.

[305]S. Karlin. Mathematical Methods and Theory in Games, Programming and Economics, Vol. 2. Addison-Wesley, Reading, MA, 1959.

[306]J. Karush. A simple proof of an inequality of McMillan. IRE Trans. Inf. Theory, IT-7:118, 1961.

[307]F. P. Kelly. Notes on effective bandwidth. Stochastic Networks Theory and Applications, pages 141 – 168, 1996.

[308]J. Kelly. A new interpretation of information rate. Bell Syst. Tech. J, 35:917 – 926, July 1956.

[309]J. H. B. Kemperman. On the Optimum Rate of Transmitting Information

(Lecture Notes in Mathematics), pages 126 – 169. Springer Verlag, New York, 1967.

[310]M. Kendall and A. Stuart. The Advanced Theory of Statistics. Macmillan, New York, 1977.

[311]A. Y. Khinchin. Mathematical Foundations of Information Theory. Dover, New York, 1957.

[312]J. C. Kieffer. A simple proof of the Moy – Perez generalization of the Shannon – McMillan theorem. Pacific J. Math., 51:203 – 206, 1974.

[313]J. C. Kieffer. A survey of the theory of source coding with a fidelity criterion. IEEE Trans. Inf. Theory, pages 1473 – 1490, Sept. 1993.

[314]Y. H. Kim. Feedback capacity of first-order moving average Gaussian channel. Proc. IEEE Int. Symp. Information Theory, Adelaide, pages 416 – 420, Sept. 2005.

[315]D. E. Knuth. Dynamic Huffman coding. J. Algorithms, pages 163 – 180, 1985.

[316]D. E. Knuth. Art of Computer Programming.

706 BIBLIOGRAPHY

[317]D. E. Knuth and A. C. Yao. The complexity of random number generation. In J. F. Traub (Ed.), Algorithms and Complexity: Recent Results and New Directions (Proceedings of the Symposium on New Directions and Recent Results in Algorithms and Complexity, Carnegie-Mellon University, 1976), pages 357 – 428. Academic Press, New York, 1976.

[318]A. N. Kolmogorov. A new metric invariant of transitive dynamical systems and automorphism in Lebesgue spaces. Dokl. Akad. Nauk SSSR, pages 861 – 864, 1958.

[319]A. N. Kolmogorov. On the Shannon theory of information transmission in the case of continuous signals. IRE Trans. Inf. Theory, IT-2:102 – 108, Sept. 1956.

[320]A. N. Kolmogorov. A new invariant for transitive dynamical systems. Dokl. Acad. Nauks SSR, 119:861 – 864, 1958.

[321]A. N. Kolmogorov. Three approaches to the quantitative definition of information. Probl. Inf. Transm. (USSR), 1:4 – 7, 1965.

[322]A. N. Kolmogorov. Logical basis for information theory and probability theory. IEEE Trans. Inf. Theory, IT-14:662 – 664, 1968.

[323]A. N. Kolmogorov. The theory of transmission of information. In Selected Works of A. N. Kolmogorov, Vol. III: Information Theory and the Theory of Algorithms, Session on scientific problems of automatization in industry, Vol. 1, Plenary talks, Izd. Akad. Nauk SSSR, Moscow, 1957, pages 66 – 99. Kluwer, Dordrecht, The Netherlands, 1993.

[324] J. Korner¨ and K. Marton. The comparison of two noisy channels. In

I.Csiszar´ and P. Elias (Ed.), Topics in Information Theory (Coll. Math. Soc.

J.Bolyai, No. 16), pages 411 – 423. North-Holland, Amsterdam, 1977.

[325]J. Korner¨ and K. Marton. General broadcast channels with degraded message sets. IEEE Trans. Inf. Theory, IT-23:60 – 64, 1977.

[326]J. Korner¨ and K. Marton. How to encode the modulo 2 sum of two binary sources. IEEE Trans. Inf. Theory, IT-25:219 – 221, 1979.

[327]J. Korner¨ and A. Orlitsky. Zero error information theory. IEEE Trans. Inf. Theory, IT-44:2207 – 2229, Oct. 1998.

[328]V. A. Kotel’nikov. On the transmission capacity of “ether” and wire in electrocommunications. Izd. Red. Upr. Svyazi RKKA, 44, 1933.

[329]V. A. Kotel’nikov. The Theory of Optimum Noise Immunity. McGraw-Hill, New York, 1959.

[330]L. G. Kraft. A device for quantizing, grouping and coding amplitude modulated pulses. Master’s thesis, Department of Electrical Engineering, MIT, Cambridge, MA, 1949.

[331]R. E. Krichevsky. Laplace’s law of succession and universal encoding. IEEE Trans. Inf. Theory, pages 296 – 303, Jan. 1998.

[332]R. E. Krichevsky. Universal Compression and Retrieval. Kluwer, Dordrecht, The Netherlands, 1994.

BIBLIOGRAPHY 707

[333]R. E. Krichevsky and V. K. Trofimov. The performance of universal encoding. IEEE Trans. Inf. Theory, pages 199 – 207, Mar. 1981.

[334]S. R. Kulkarni, G. Lugosi, and S. S. Venkatesh. Learning pattern classification: a survey. IEEE Trans. Inf. Theory, pages 2178 – 2206, Oct. 1998.

[335]S. Kullback. Information Theory and Statistics. Wiley, New York, 1959.

[336]S. Kullback. A lower bound for discrimination in terms of variation. IEEE Trans. Inf. Theory, IT-13:126 – 127, 1967.

[337]S. Kullback, J. C. Keegel, and J. H. Kullback. Topics in Statistical Information Theory. Springer-Verlag, Berlin, 1987.

[338]S. Kullback and M. A. Khairat. A note on minimum discrimination information. Ann. Math. Stat., pages 279 – 280, 1966.

[339]S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Stat., 22:79 – 86, 1951.

[340]H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty: Part II. Bell Syst. Tech. J., 40:65 – 84, 1961.

[341]H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty: Part III. Bell Syst. Tech. J., 41:1295 – 1336, 1962.

[342]G. G. Langdon. An introduction to arithmetic coding. IBM J. Res. Dev., 28:135 – 149, 1984.

[343]G. G. Langdon and J. J. Rissanen. A simple general binary source code.

IEEE Trans. Inf. Theory, IT-28:800, 1982.

[344]A. Lapidoth and P. Narayan. Reliable communication under channel uncertainty. IEEE Trans. Inf. Theory, pages 2148 – 2177, Oct. 1998.

[345]A. Lapidoth and J. Ziv. On the universality of the LZ-based decoding algorithm. IEEE Trans. Inf. Theory, pages 1746 – 1755, Sept. 1998.

[346]H. A. Latane´. Criteria for choice among risky ventures. J. Polit. Econ., 38:145 – 155, Apr. 1959.

[347]H. A. Latane´ and D.L. Tuttle. Criteria for portfolio building. J. Finance, 22:359 – 373, Sept. 1967.

[348] E. A. Lee and D. G. Messerschmitt. Digital Communication, 2nd ed. Kluwer, Boston, 1994.

[349]J. Leech and N. J. A. Sloane. Sphere packing and error-correcting codes. Can. J. Math, pages 718 – 745, 1971.

[350]E. L. Lehmann and H. Scheffe´. Completeness, similar regions and unbiased estimation. Sankhya, 10:305 – 340, 1950.

[351]A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Trans. Inf. Theory, pages 75 – 81, Jan. 1976.

[352]L. A. Levin. On the notion of a random sequence. Sov. Math. Dokl., 14:1413 – 1416, 1973.

[353]L. A. Levin and A. K. Zvonkin. The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russ. Math. Surv., 25/6:83 – 124, 1970.

708 BIBLIOGRAPHY

[354]M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications, 2nd ed. Springer-Verlag, New York, 1997.

[355]H. Liao. Multiple access channels. Ph.D. thesis, Department of Electrical Engineering, University of Hawaii, Honolulu, 1972.

[356]S. Lin and D. J. Costello, Jr. Error Control Coding: Fundamentals and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[357]D. Lind and B. Marcus. Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.

[358]Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer design. IEEE Trans. Commun., COM-28:84 – 95, 1980.

[359]T. Linder, G. Lugosi, and K. Zeger. Rates of convergence in the source coding theorem in empirical quantizer design. IEEE Trans. Inf. Theory, pages 1728 – 1740, Nov. 1994.

[360]T. Linder, G. Lugosi, and K. Zeger. Fixed-rate universal lossy source coding and rates of convergence for memoryless sources. IEEE Trans. Inf. Theory, pages 665 – 676, May 1995.

[361]D. Lindley. Boltzmann’s Atom: The Great Debate That Launched A Revolution in Physics. Free Press, New York, 2001.

[362]A. Liversidge. Profile of Claude Shannon. In N. J. A. Sloane and A. D. Wyner (Eds.), Claude Elwood Shannon Collected Papers. IEEE Press, Piscataway, NJ, 1993 (Omni magazine, Aug. 1987.)

[363]S. P. Lloyd. Least Squares Quantization in PCM (Technical Report). Bell Lab. Tech. Note, 1957.

[364] G. Louchard and Wojciech Szpankowski. On the average redundancy rate of the Lempel – Ziv code. IEEE Trans. Inf. Theory, pages 2 – 8, Jan. 1997.

[365]L. Lovasz. On the Shannon capacity of a graph. IEEE Trans. Inf. Theory, IT-25:1 – 7, 1979.

[366]R. W. Lucky. Silicon Dreams: Information, Man and Machine. St. Martin’s Press, New York, 1989.

[367]D. J. C. Mackay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge, 2003.

[368]D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of low-density parity-check codes. Electron. Lett., pages 1645 – 1646, Mar. 1997.

[369]F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 1977.

[370]B. Marcus. Sofic systems and encoding data. IEEE Trans. Inf. Theory, IT-31(3):366 – 377, May 1985.

[371]R. J. Marks. Introduction to Shannon Sampling and Interpolation Theory. Springer-Verlag New York, 1991.

BIBLIOGRAPHY 709

[372]A. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applications. Academic Press, New York, 1979.

[373]A. Marshall and I. Olkin. A convexity proof of Hadamard’s inequality. Am. Math. Monthly, 89(9):687 – 688, 1982.

[374]P. Martin-Lof¨. The definition of random sequences. Inf. Control, 9:602 – 619, 1966.

[375]K. Marton. Information and information stability of ergodic sources. Probl. Inf. Transm. (VSSR), pages 179 – 183, 1972.

[376]K. Marton. Error exponent for source coding with a fidelity criterion. IEEE Trans. Inf. Theory, IT-20:197 – 199, 1974.

[377]K. Marton. A coding theorem for the discrete memoryless broadcast channel.

IEEE Trans. Inf. Theory, IT-25:306 – 311, 1979.

[378]J. L. Massey and P. Mathys. The collision channel without feedback. IEEE Trans. Inf. Theory, pages 192 – 204, Mar. 1985.

[379]R. A. McDonald. Information rates of Gaussian signals under criteria constraining the error spectrum. D. Eng. dissertation, Yale University School of Electrical Engineering, New Haven, CT, 1961.

[380]R. A. McDonald and P. M. Schultheiss. Information rates of Gaussian signals under criteria constraining the error spectrum. Proc. IEEE, pages 415 – 416, 1964.

[381]R. A. McDonald and P. M. Schultheiss. Information rates of Gaussian signals under criteria constraining the error spectrum. Proc. IEEE, 52:415 – 416, 1964.

[382]R. J. McEliece, D. J. C. MacKay, and J. F. Cheng. Turbo decoding as an instance of Pearl’s belief propagation algorithm. IEEE J. Sel. Areas Commun., pages 140 – 152, Feb. 1998.

[383]R. J. McEliece. The Theory of Information and Coding. Addison-Wesley, Reading, MA, 1977.

[384]B. McMillan. The basic theorems of information theory. Ann. Math. Stat., 24:196 – 219, 1953.

[385]B. McMillan. Two inequalities implied by unique decipherability. IEEE Trans. Inf. Theory, IT-2:115 – 116, 1956.

[386]N. Merhav and M. Feder. Universal schemes for sequential decision from individual data sequences. IEEE Trans. Inf. Theory, pages 1280 – 1292, July 1993.

[387]N. Merhav and M. Feder. A strong version of the redundancy-capacity theorem of universal coding. IEEE Trans. Inf. Theory, pages 714 – 722, May 1995.

[388]N. Merhav and M. Feder. Universal prediction. IEEE Trans. Inf. Theory, pages 2124 – 2147, Oct. 1998.

[389]R. C. Merton and P. A. Samuelson. Fallacy of the log-normal approximation to optimal portfolio decision-making over many periods. J. Finan. Econ., 1:67 – 94, 1974.

710 BIBLIOGRAPHY

¨

[390] H. Minkowski. Diskontinuitatsbereich¨ fur¨ arithmetische Aquivalenz. J. Math., 129:220 – 274, 1950.

[391] L. Mirsky. On a generalization of Hadamard’s determinantal inequality due to Szasz. Arch. Math., VIII:274 – 275, 1957.

[392] S. C. Moy. Generalizations of the Shannon – McMillan theorem. Pacific J. Math., pages 705 – 714, 1961.

[393] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behaviour. Princeton University Press, Princeton, NJ, 1980.

[394] J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. Roy. Soc. London A, 231:289 – 337, 1933.

[395] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000.

[396] H. Nyquist. Certain factors affecting telegraph speed. Bell Syst. Tech. J., 3:324, 1924.

[397] H. Nyquist. Certain topics in telegraph transmission theory. AIEE Trans., pages 617 – 644, Apr. 1928.

[398] J. Omura. A coding theorem for discrete time sources. IEEE Trans. Inf. Theory, IT-19:490 – 498, 1973.

[399] A. Oppenheim. Inequalities connected with definite Hermitian forms. J. London Math. Soc., 5:114 – 119, 1930.

[400] E. Ordentlich. On the factor-of-two bound for Gaussian multiple-access channels with feedback. IEEE Trans. Inf. Theory, pages 2231 – 2235, Nov. 1996.

[401] E. Ordentlich and T. Cover. The cost of achieving the best portfolio in hindsight. Math. Operations Res., 23(4): 960 – 982, Nov. 1998.

[402] S. Orey. On the Shannon – Perez – Moy theorem. Contemp. Math., 41:319 – 327, 1985.

[403] A. Orlitsky. Worst-case interactive communication. I: Two messages are almost optimal. IEEE Trans. Inf. Theory, pages 1111 – 1126, Sept. 1990.

[404] A. Orlitsky. Worst-case interactive communication. II: Two messages are not optimal. IEEE Trans. Inf. Theory, pages 995 – 1005, July 1991.

[405] A. Orlitsky. Average-case interactive communication. IEEE Trans. Inf. Theory, pages 1534 – 1547, Sept. 1992.

[406] A. Orlitsky and A. El Gamal. Average and randomized communication complexity. IEEE Trans. Inf. Theory, pages 3 – 16, Jan. 1990.

[407] D. S. Ornstein. Bernoulli shifts with the same entropy are isomorphic. Adv. Math., pages 337 – 352, 1970.

[408] D. S. Ornstein and B. Weiss. Entropy and data compression schemes. IEEE Trans. Inf. Theory, pages 78 – 83, Jan. 1993.

[409] D. S. Ornstein. Bernoulli shifts with the same entropy are isomorphic. Adv. Math., 4:337 – 352, 1970.

BIBLIOGRAPHY 711

[410]L. H. Ozarow. The capacity of the white Gaussian multiple access channel with feedback. IEEE Trans. Inf. Theory, IT-30:623 – 629, 1984.

[411]L. H. Ozarow and C. S. K. Leung. An achievable region and an outer bound for the Gaussian broadcast channel with feedback. IEEE Trans. Inf. Theory, IT-30:667 – 671, 1984.

[412]H. Pagels. The Dreams of Reason: the Computer and the Rise of the Sciences of Complexity. Simon and Schuster, New York, 1988.

[413]C. Papadimitriou. Information theory and computational complexity: The expanding interface. IEEE Inf. Theory Newslett. (Special Golden Jubilee Issue), pages 12 – 13, June 1998.

[414]R. Pasco. Source coding algorithms for fast data compression. Ph.D. thesis, Stanford University, Stanford, CA, 1976.

[415]A. J. Paulraj and C. B. Papadias. Space-time processing for wireless communications. IEEE Signal Processing Mag., pages 49 – 83, Nov. 1997.

[416]W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression Standard. Van Nostrand Reinhold, New York, 1988.

[417]A. Perez. Extensions of Shannon – McMillan’s limit theorem to more general stochastic processes. In Trans. Third Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, pages 545 – 574, Czechoslovak Academy of Sciences, Prague, 1964.

[418]J. R. Pierce. The early days of information theory. IEEE Trans. Inf. Theory, pages 3 – 8, Jan. 1973.

[419]J. R. Pierce. An Introduction to Information Theory: Symbols, Signals and Noise, 2nd ed. Dover Publications, New York, 1980.

[420]J. T. Pinkston. An application of rate-distortion theory to a converse to the coding theorem. IEEE Trans. Inf. Theory, IT-15:66 – 71, 1969.

[421]M. S. Pinsker. Talk at Soviet Information Theory meeting, 1969. No abstract published.

[422]M. S. Pinsker. Information and Information Stability of Random Variables and Processes. Holden-Day, San Francisco, CA, 1964. (Originally published in Russian in 1960.)

[423]M. S. Pinsker. The capacity region of noiseless broadcast channels. Probl. Inf. Transm. (USSR), 14(2):97 – 102, 1978.

[424]M. S. Pinsker and R. L. Dobrushin. Memory increases capacity. Probl. Inf. Transm. (USSR), pages 94 – 95, Jan. 1969.

[425]M. S. Pinsker. Information and Stability of Random Variables and Processes. Izd. Akad. Nauk, 1960. Translated by A. Feinstein, 1964.

[426]E. Plotnik, M. Weinberger, and J. Ziv. Upper bounds on the probability of sequences emitted by finite-state sources and on the redundancy of the Lempel – Ziv algorithm. IEEE Trans. Inf. Theory, IT-38(1):66 – 72, Jan. 1992.

[427]D. Pollard. Convergence of Stochastic Processes. Springer-Verlag, New York, 1984.

712 BIBLIOGRAPHY

[428]G. S. Poltyrev. Carrying capacity for parallel broadcast channels with degraded components. Probl. Peredachi Inf., pages 23 – 35, Apr. – June 1977.

[429]S. Pombra and T. M. Cover. Nonwhite Gaussian multiple access channels with feedback. IEEE Trans. Inf. Theory, pages 885 – 892, May 1994.

[430]H. V. Poor. An Introduction to Signal Detection and Estimation, 2nd ed. Springer-Verlag, New York, 1994.

[431]F. Pratt. Secret and Urgent. Blue Ribbon Books, Garden City, NY, 1939.

[432]L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, pages 257 – 286, Feb. 1989.

[433]L. R. Rabiner and R. W. Schafer. Digital Processing of Speech Signals. Prentice-Hall, Englewood Cliffs, NJ, 1978.

[434]R. Ahlswede and Z. Zhang. New directions in the theory of identification via channels. IEEE Trans. Inf. Theory, 41:1040 – 1050, 1995.

[435]C. R. Rao. Information and accuracy obtainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc., 37:81 – 91, 1945.

[436]I. S. Reed. 1982 Claude Shannon lecture: Application of transforms to coding and related topics. IEEE Inf. Theory Newslett., pages 4 – 7, Dec. 1982.

[437]F. M. Reza. An Introduction to Information Theory. McGraw-Hill, New York, 1961.

[438]S. O. Rice. Mathematical analysis of random noise. Bell Syst. Tech. J., pages 282 – 332, Jan. 1945.

[439]S. O. Rice. Communication in the presence of noise: probability of error for two encoding schemes. Bell Syst. Tech. J., 29:60 – 93, 1950.

[440]B. E. Rimoldi and R. Urbanke. A rate-splitting approach to the Gaussian multiple-access channel. IEEE Trans. Inf. Theory, pages 364 – 375, Mar. 1996.

[441]J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM J. Res. Dev., 20:198, 1976.

[442]J. Rissanen. Modelling by shortest data description. Automatica, 14:465 – 471, 1978.

[443]J. Rissanen. A universal prior for integers and estimation by minimum description length. Ann. Stat., 11:416 – 431, 1983.

[444]J. Rissanen. Universal coding, information, prediction and estimation. IEEE Trans. Inf. Theory, IT-30:629 – 636, 1984.

[445]J. Rissanen. Stochastic complexity and modelling. Ann. Stat., 14:1080 – 1100, 1986.

[446]J. Rissanen. Stochastic complexity (with discussions). J. Roy. Stat. Soc., 49:223 – 239, 252 – 265, 1987.

[447]J. Rissanen. Stochastic complexity in Statistical Inquiry. World Scientific, Singapore, 1989.

[448]J. J. Rissanen. Complexity of strings in the class of Markov sources. IEEE Trans. Inf. Theory, pages 526 – 532, July 1986.

BIBLIOGRAPHY 713

[449]J. J. Rissanen and G. G. Langdon, Jr. Universal modeling and coding. IEEE Trans. Inf. Theory, pages 12 – 23, Jan. 1981.

[450]B. Y. Ryabko. Encoding a source with unknown but ordered probabilities. Probl. Inf. Transm., pages 134 – 139, Oct. 1979.

[451]B. Y. Ryabko. A fast on-line adaptive code. IEEE Trans. Inf. Theory, pages 1400 – 1404, July 1992.

[452]P. A. Samuelson. Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat., pages 236 – 239, 1969.

[453]P. A. Samuelson. The “fallacy” of maximizing the geometric mean in long sequences of investing or gambling. Proc. Natl. Acad. Sci. USA, 68:214 – 224, Oct. 1971.

[454]P. A. Samuelson. Why we should not make mean log of wealth big though years to act are long. J. Banking and Finance, 3:305 – 307, 1979.

[455]I. N. Sanov. On the probability of large deviations of random variables. Mat. Sbornik, 42:11 – 44, 1957. English translation in Sel. Transl. Math. Stat. Prob., Vol. 1, pp. 213-244, 1961.

[456]A. A. Sardinas and G.W. Patterson. A necessary and sufficient condition for the unique decomposition of coded messages. IRE Conv. Rec., Pt. 8, pages 104 – 108, 1953.

[457]H. Sato. On the capacity region of a discrete two-user channel for strong interference. IEEE Trans. Inf. Theory, IT-24:377 – 379, 1978.

[458]H. Sato. The capacity of the Gaussian interference channel under strong interference. IEEE Trans. Inf. Theory, IT-27:786 – 788, 1981.

[459]H. Sato and M. Tanabe. A discrete two-user channel with strong interference. Trans. IECE Jap., 61:880 – 884, 1978.

[460]S. A. Savari. Redundancy of the Lempel – Ziv incremental parsing rule. IEEE Trans. Inf. Theory, pages 9 – 21, January 1997.

[461]S. A. Savari and R. G. Gallager. Generalized Tunstall codes for sources with memory. IEEE Trans. Inf. Theory, pages 658 – 668, Mar. 1997.

[462]K. Sayood. Introduction to Data Compression. Morgan Kaufmann, San Francisco, CA, 1996.

[463]J. P. M. Schalkwijk. A coding scheme for additive noise channels with feedback. II: Bandlimited signals. IEEE Trans. Inf. Theory, pages 183 – 189, Apr. 1966.

[464]J. P. M. Schalkwijk. The binary multiplying channel: a coding scheme that operates beyond Shannon’s inner bound. IEEE Trans. Inf. Theory, IT28:107 – 110, 1982.

[465]J. P. M. Schalkwijk. On an extension of an achievable rate region for the binary multiplying channel. IEEE Trans. Inf. Theory, IT-29:445 – 448, 1983.

[466]C. P. Schnorr. A unified approach to the definition of random sequences.

Math. Syst. Theory, 5:246 – 258, 1971.

714 BIBLIOGRAPHY

[467]C. P. Schnorr. Process, complexity and effective random tests. J. Comput. Syst. Sci., 7:376 – 388, 1973.

[468]C. P. Schnorr. A surview on the theory of random sequences. In R. Butts and J. Hinitikka (Eds.), Logic, Methodology and Philosophy of Science. Reidel, Dordrecht, The Netherlands, 1977.

[469]G. Schwarz. Estimating the dimension of a model. Ann. Stat., 6:461 – 464, 1978.

[470]S. Shamai and S. Verdu. The empirical distribution of good codes. IEEE Trans. Inf. Theory, pages 836 – 846, May 1997.

[471]C. E. Shannon. A Mathematical Theory of Cryptography (Tech. Rept. MM 45-110-02). Bell Lab. Tech. Memo., Sept. 1, 1945.

[472]C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27:379 – 423,623 – 656, 1948.

[473]C. E. Shannon. Some geometrical results in channel capacity. Verh. Dtsch. Elektrotechnik. Fachber., pages 13 – 15, 1956.

[474]C. E. Shannon. The zero-error capacity of a noisy channel. IRE Trans. Inf. Theory, IT-2:8 – 19, 1956.

[475]C. E. Shannon. Channels with side information at the transmitter. IBM J. Res. Dev., pages 289 – 293, 1958.

[476]C. E. Shannon. Probability of error for optimal codes in a Gaussian channel. Bell Syst. Tech. J., pages 611 – 656, May 1959.

[477]C. E. Shannon. Two-way communication channels. Proc. 4th. Berkeley Symp. Mathematical Statistics and Probability (June 20 – July 30, 1960), pages 611 – 644, 1961.

[478]C. E. Shannon. The wonderful world of feedback. IEEE Int. Symp. Infor. Theory, ser. First Shannon Lecture, Ashkelon, Israel, 1973.

[479]C. E. Shannon. The mind reading machine. In Shannon’s Collected Papers, pages 688 – 689, 1993.

[480]C. E. Shannon. Communication in the presence of noise. Proc. IRE, 37:10 – 21, January 1949.

[481]C. E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. J., 28:656 – 715, 1949.

[482]C. E. Shannon. Prediction and entropy of printed English. Bell Syst. Tech. J., 30:50 – 64, January 1951.

[483]C. E. Shannon. Certain results in coding theory for noisy channels. Infor. Control, 1:6 – 25, 1957.

[484]C. E. Shannon. Channels with side information at the transmitter. IBM J. Res. Dev., 2:289 – 293, 1958.

[485]C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion. IRE Nat. Conv. Rec., Pt. 4, pages 142 – 163, 1959.