Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка к лр по физике Механика.doc
Скачиваний:
32
Добавлен:
17.05.2015
Размер:
2.08 Mб
Скачать

Изучение удара тел

Цель работы: проверить выполнение закона сохранения импульса, определить коэффициент восстановления энергии при ударе тел.

Оборудование: баллистический маятник, весы, шкала.

Теоретическое введение

Удар – это процесс кратковременного столкновения тел, при котором происходит значительное изменение скоростей тел, их импульсов. (Импульсом тела называется векторная величина, определяемая произведением массы тела на его скорость , импульсом силы является произведение силы на время ее действия .)

Силы удара могут быть сравнительно большими, так как, согласно второму закону Ньютона, изменение импульса тела равно импульсу силы: , и при малом времени удара t сила удара может быть большой. В этом случае действием внешних сил на время удара можно пренебречь и считать систему соударяющихся тел замкнутой. Для замкнутой системы тел выполняется закон сохранения импульса: в замкнутой системе тел сумма импульсов тел постоянна, или сумма импульсов тел до взаимодействия равна сумме импульсов тел после взаимодействия:

или . (1)

Закон сохранения импульса является важнейшим законом механики. Он позволяет рассчитать скорости тел после взаимодействия, даже не имея представления о силах взаимодействия.

Существует две предельных идеализации реального удара: идеально упругий удар и абсолютно неупругий удар. При идеально упругом ударе тела в фазе сближения деформируются упруго, и часть кинетической энергии превращается в потенциальную энергию упругой деформации. Затем во второй фазе под действием упругих сил тела отталкиваются, форма тел восстанавливается, и потенциальная энергия деформации вновь превращается в кинетическую энергию. В результате кинетическая энергия сохраняется.

При абсолютно неупругом ударе тела деформируются пластически. Удар заканчивается на фазе сближения, и затем тела движутся совместно, как одно целое. Это является признаком неупругого удара. Так как часть кинетической энергии превращается в работу пластической деформации, во внутреннюю энергию, то кинетическая энергия не сохраняется. Диссипацию, то есть рассеяние кинетической энергии, характеризуют коэффициентом восстановления энергии. Он равен отношению кинетической энергии обоих тел после удара к их энергии до удара:

. (2)

Для идеально упругого удара К=1, в других случаях К< 1.

Рассмотрим прямой центральный удар двух шаров, при котором скорости шаров направлены по линии центров масс и точка соприкосновения тоже находится на этой линии. Пусть правый шар массы т1 со скоростью V1 налетает на покоящийся, V2 =0, левый шар массы т2. Закон сохранения импульса для упругого и неупругого ударов в проекции на направление движения правого шара (рис. 1) будет иметь вид:

; (3)

. (4)

Скорости шаров определим по углам отклонения их нитей подвеса от вертикали. Приведем пример для правого шара. При движении от крайнего положения с высоты h потенциальная энергия переходит в кинетическую энергию. Согласно закону сохранения механической энергии

. (5)

Откуда .

Высота падения связана с углом отклонениянити длинойl соотношением . Для малых углов отклонения. Тогда скорость шара перед ударом будет пропорциональна углу отклонения .По таким же формулам можно определить скорости других шаров. Подставив их в уравнения (3) и (4), получим уравнения, проверяемые экспериментально:

, (6)

. (7)

Значение коэффициента восстановления энергии можно определить по углам отклонения шаров. Если подставить в формулу (2) скорости шаров, то получим для упругого и неупругого ударов:

; (8)

. (9)

Для неупругого удара теоретическое значение коэффициента восстановления энергии можно определить, подставив в формулу (2) скорость шаров после удара из (4):

. (10)