Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Механические.docx
Скачиваний:
12
Добавлен:
17.05.2015
Размер:
28.08 Кб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

РЕФЕРАТ НА ТЕМУ

Механические свойства минералов

Выполнил:

Студент гр. 3.5

Хаматов А.А.

Проверил

Доктор г-м наук

Мустафин С.К.

2013

Содержание

  1. Введение

  2. Твердость

  3. Спайность

  4. Излом

  5. Прочность

  6. Список литературы

1. Введение

Всякие превращения вещества, связанные с изменением его состава, называются химическими реакциями. В земной коре, морях и озерах постоянно и непрерывно происходят такие превращения помимо воли и какого бы то ни было участия человека; эти реакции можно назвать естественными или природными.  Всякий продукт естественных реакций, вполне или приблизительно однородный физически и химически, называется минералом. Большинство минералов существует в природе в твердом состоянии, но среди них есть жидкие, как например нефть, а исходя из приведенного определения, минералом можно назвать и всякий газ, образующийся в результате природных химических процессов. Минералы – это химические соединения (исключение составляют самородные элементы). Однако даже бесцветные, оптически прозрачные образцы этих минералов почти всегда содержат небольшие количества примесей. Природные растворы или расплавы, из которых кристаллизуются минералы, обычно состоят из многих элементов. В процессе образования соединений немногочисленные атомы менее распространенных элементов могут замещать атомы главных элементов. Такое замещение настолько обычно, что химический состав многих минералов лишь очень редко приближается к составу чистого соединения. 

Долгое время основными характеристиками минералов служили внешняя форма их кристаллов и других выделений, а также физические свойства (цвет, блеск, спайность, твердость, плотность и проч.), имеющие и в настоящее время большое значение при их описании и визуальной (в частности, полевой) диагностике. Эти характеристики, а также оптические, химические, электрические, магнитные и иные свойства зависят от химического состава и внутреннего строения (кристаллической структуры) минералов. 

2. Твердость

Твердость минерала является его характерным свойством и помогает его идентификации. Традиционно твердость, которой оперируют минералоги, определяется путем царапания, когда оценивается способность острого края одного минерала оставить след на ровной поверхности другого. Такая проверка основывается на ряде минералов, подобранных в 1824 г. австрийским минералогом Ф. Моосом (1773-1839) и пронумерованных им от 1 до 10 в порядке увеличения твердости. Каждый минерал оставляет царапину на тех минералах, которые имеют меньший номер в этой шкале, но не производит такого воздействия на минералы с большим номером. Эталонами послужили следующие минералы:

Шкала твердости Мооса

1. Тальк 6. Ортоклаз

2. Гипс 7. Кварц

3. Кальцит 8. Топаз

4. Флюорит 9. Корунд

5. Апатит 10. Алмаз

Моос прекрасно сознавал, что интервалы твердости в его шкале неравноценны, но он отмечал, что это не должно приуменьшить ее полезность, и практика подтвердила его точку зрения.

К перечню эталонных минералов можно добавить для удобства следующие полезные при практических определениях средства: ноготь большого пальца, который у большинства людей царапает гипс, но не кальцит, хорошего качества острие перочинного ножа, которое слегка царапает ортоклаз, и обычное оконное стекло, которое может царапаться ортоклазом и легко царапается кварцем.

Для определения твердости необходимо иметь в своем распоряжении обломки минералов указанной шкалы. Каждый обломок можно вмонтировать с помощью эпоксидной смолы в конец короткой металлической трубки, т. е. изготовить набор «карандашей» для определения твердости, которыми удобно пользоваться. Для определения твердости нужно выбрать ровную поверхность, что бывает трудно, так как многие минералы являются хрупкими и края их неровных участков

могут крошиться, что затрудняет точное определение твердости. Когда царапина или другой отпечаток оставлены на ровной поверхности, то видно, что, несмотря на хрупкость, испытуемый минерал поддается пластической деформации под воздействием острого края эталонного минерала. Царапину следует проводить короткими осторожными движениями, чтобы не испортить образец. Когда проверяемый минерал близок по твердости к стандарту, оставленный след необходимо слегка протереть и рассмотреть под лупой, чтобы убедиться, что царапина действительно была сделана.

Соотношение твердости по шкале Мооса с твердостью, полученной методом микровдавливания

Существует стандартный метод определения твердости металлов посредством вдавливания в их поверхность под известной нагрузкой пирамидального алмазного наконечника и последующего измерения поперечника образовавшейся вмятины. Этот метод можно с успехом применить к хрупким минералам, которые испытывают пластическую деформацию под локальной нагрузкой, и использовать для сравнения со шкалой твердости Мооса.

Результаты опытов по проведению царапины на металлах показывают, что твердость оставляющего на их поверхности след наконечника должна быть приблизительно в 1,2 раза больше твердости поверхности. Если это так, то по мере возрастания твердости интервалы между стандартами на шкале Мооса будут систематически возрастать, поскольку в идеале каждый стандарт должен иметь твердость по крайней мере в 1,2 раза большую, чем предыдущий. Если результаты определения твердости входящих в шкалу Мо-оса минералов, полученные методом микровдавливания (MB), сопоставить с числами, которые им присвоил Моос, то будет видно, что интервалы действительно увеличиваются закономерно, за исключением чрезвычайно большого интервала между корундом и алмазом (рис. 6.3). Хотя в значениях твердости, найденных методом MB различными исследователями, наблюдается некоторый разброс, можно говорить о том, что каждый стандартный минерал шкалы Мооса вплоть до корунда (№ 9) в 1,6 раза тверже предыдуще-

го. Это свидетельствует о том, что Моос отбирал свои минералы с большой тщательностью и искусством, чтобы получить не равные, а обоснованные интервалы своей шкалы. Исключение составляет алмаз, который по твердости значительно превышает все остальные стандартные минералы.

Твердость, подобно другим физическим свойствам, зависит от анизотропии структуры минералов и варьирует по разным направлениям. Это справедливо даже для кубических минералов. За исключением нескольких случаев (например, у кианита Тв. = 4 : 5 на плоскости (100), параллельной оси ж, 6 -г 7 на плоскости {100}, параллельной оси у, и 7 на плоскости {010}), разница не настолько велика, чтобы ее стоило учитывать. У алмаза, однако, разница в твердости на различных гранях значительна, что и позволяет осуществлять его огранку посредством шлифовки алмазным порошком.

Твердость различных групп минералов

Представляется полезным привести некоторые обобщенные данные о твердости минералов. Дополнительные сведения приведены в Приложении II.

Самородные элементы, не считая ярчайшего исключения, представленного алмазом, обычно являются мягкими. Вместе с тем платина (Тв. = 4 : 4,5) и железо (Тв. = 4,5) достаточно твердые; еще большей твердостью обладает иридосмин (Тв. = 6 : 7). Соединения тяжелых металлов (серебра, меди, свинца, висмута и ртути) являются мягкими (Тв. < 4).

Большинство сульфидов и сульфосолей относительно мягки, хотя у обычного дисульфида железа — пирита — Тв. = 6 : 6,5. Галогениды мягкие.

Карбонаты и сульфаты обычно мягкие. Фосфаты обладают промежуточными значениями твердости (Тв. ~ 5).

Безводные силикаты чаще всего твердые (Тв.= 5,5 : 8), а водные силикаты (слюды, цеолиты) мягче.

Оксиды, как правило, твердые, а гидроксиды, наоборот, относительно мягкие.