
- •Глава 1 история физиологии. Методы физиологических исследований
- •Глава 2 физиология возбудимых тканей
- •Биоэлектрические явления в возбудимых тканях. Природа возбуждения
- •Мембранный потенциал
- •Изменения мембранного потенциала. Пороговые и подпороговые раздражители
- •Потенциал действия
- •Изменения возбудимости при возбуждении
- •Законы раздражения возбудимых тканей
- •Физиология нервов и нервных волокон
- •Физиология мышц
- •Механизм мышечного сокращения
- •Гладкие мышцы
- •Физиология синапсов
- •Фармакологические влияния на возбудимые ткани
- •Глава 3 физиология центральной нервной системы
- •Глиальные клетки
- •Организация нервной системы
- •Общие закономерности деятельности центральной нервной системы Рефлекторный принцип регуляции
- •Нервные центры
- •Торможение в центральной нервной системе и его виды
- •Классификация видов торможения
- •Принципы координационной деятельности центральной нервной системы
- •Частная физиология центральной нервной системы Спинной мозг
- •Нейроны спинного мозга
- •Собственные функции спинного мозга
- •Проводниковая функция спинного мозга
- •Ствол мозга
- •Продолговатый мозг
- •Варолиев мост
- •Средний мозг
- •Мозжечок
- •Промежуточный мозг
- •Лимбическая система
- •Базальные ганглии
- •Ретикулярная формация
- •Кора больших полушарий
- •Локализация функций в коре больших полушарий
- •Электрическая активность коры головного мозга
- •Гематоэнцефалический барьер
- •Функции гематоэнцефалического барьера
- •Факторы, повышающие проницаемость гематоэнцефалического барьера
- •Цереброспинальная жидкость
- •Фармакологические препараты, регулирующие функцию центральной нервной системы
- •Глава 4 вегетативная (автономная) нервная система
- •Различия между вегетативной и соматической нервными системами
- •Структура и функции вегетативной нервной системы
- •Симпатический отдел вегетативной нервной системы
- •Внутриорганный отдел (энтеральный, метасимпатический)
- •Синаптическая передача
- •Медиаторы вегетативной нервной системы
- •Центры регуляции вегетативных функций
- •Средства, влияющие на синаптическую передачу
- •Глава 5 железы внутренней секреции
- •Общая физиология желез внутренней секреции
- •Регуляция функций желез внутренней секреции
- •Частная физиология желез внутренней секреции Гипофиз
- •Гормоны передней доли гипофиза
- •Гормоны задней доли гипофиза
- •Щитовидная железа
- •Околощитовидные (паращитовидные) железы
- •Надпочечники
- •Гормоны коры надпочечников
- •Гормоны мозгового слоя надпочечников
- •Поджелудочная железа
- •Половые железы
- •Мужские половые гормоны (андрогены)
- •Женские половые гормоны
- •Овариально-менструальный (менструальный) цикл
- •Плацента
- •Гормональные средства, используемые в фармакологические целях
- •Глава 6 физиология крови
- •Объем и физико-химические свойства крови
- •Состав крови
- •Плазма крови
- •Форменные элементы крови
- •Эритроциты
- •Гемоглобин и его соединения
- •Гемолиз
- •Скорость оседания эритроцитов (соэ)
- •Эритропоэз
- •Лейкоциты
- •Лейкопоэз
- •Тромбоциты
- •Система гемостаза
- •Свертывающие механизмы
- •Сосудисто-тромбоцитарный гемостаз
- •Коагуляционный гемостаз
- •Фибринолиз
- •Противосвертывающие механизмы
- •Группы крови
- •Система резус
- •Фармакологическая коррекция нарушений гемопоэза и гемостаза
- •Средства, влияющие на гемопоэз
- •Средства, влияющие на гемостаз
- •Глава 7 крово- и лимфообращение
- •Свойства сердечной мышцы
- •Электрическая активность клеток миокарда и проводящей системы сердца
- •Возбудимость сердечной мышцы
- •Проводимость и сократимость сердечной мышцы
- •Электрокардиография
- •Сердечный цикл
- •Сосудистая система Классификация сосудов. Основы гемодинамики
- •Артериальный пульс
- •Микроциркуляция
- •Транссосудистый обмен веществ
- •Движение крови в венах
- •Венозное давление
- •Венный пульс
- •Нейрогуморальная регуляция кровообращения Регуляция деятельности сердца
- •Внутрисердечные механизмы регуляции
- •Характер влияний блуждающих и симпатических нервов на работу сердца
- •Гуморальная регуляция деятельности сердца
- •Регуляция тонуса сосудов
- •Методы исследования сердечно-сосудистой системы
- •Коронарное кровообращение
- •Регуляция коронарного кровотока
- •Средства, влияющие на сократимость сердечной мышцы
- •Средства, улучшающие коронарный кровоток и метаболизм миокарда
- •Средства, нормализующие кровяное давление
- •Средства, влияющие на метаболизм сосудистой стенки и ее проницаемость
- •Лимфатическая система
- •Функции лимфатической системы
- •Лимфообразование
- •Нервная регуляция лимфообразования
- •Гуморальная регуляция лимфотока и лимфообразования
- •Состав лимфы
- •Глава 8 физиология дыхания
- •Состав и свойства дыхательных сред
- •Внешнее дыхание
- •Внутриплевральное и внутрилегочное давление
- •Давления в процессе дыхания
- •Вентиляция легких и легочные объемы
- •Газообмен и транспорт газов
- •Различных рН крови (а) и при изменении температуры (б) Кривые 1-6 соответствуют 0°, 10°, 20°, 30°, 38° и 43°с
- •Регуляция внешнего дыхания
- •Локализация и функциональные свойства дыхательных нейронов
- •Рефлекторная регуляция дыхания
- •Рефлексы с проприорецепторов дыхательных мышц
- •Гуморальная регуляция дыхания
- •Дыхание в измененных условиях
- •Дыхание при физической нагрузке
- •Дыхание при гипоксии
- •Дыхание при высоком атмосферном давлении
- •Патологические типы дыхания
- •Негазообменные функции воздухоносных путей и легких
- •Фармакологическая коррекция патологии органов дыхания
- •Глава 9 пищеварение
- •Функции желудочно-кишечного тракта
- •Общие принципы регуляции процессов пищеварения
- •Пищеварение в полости рта
- •Состав и свойства слюны
- •Функции слюны
- •Регуляция слюноотделения
- •Пищеварение в желудке
- •Секреторная функция желудка
- •Состав и свойства желудочного сока
- •Регуляция желудочной секреции
- •Пищеварение в тонкой кишке
- •Состав и свойства панкреатического сока
- •Регуляция секреции поджелудочной железы
- •Состав и свойства кишечного сока
- •Регуляция кишечной секреции
- •Полостное и пристеночное пищеварение в тонкой кишке
- •Пищеварение в толстой кишке
- •Секреторная функция толстой кишки
- •Микрофлора толстой кишки
- •Моторика пищеварительного тракта
- •Жевание
- •Глотание
- •Моторная функция желудка
- •Эвакуация химуса из желудка в двенадцатиперстную кишку
- •Моторная функция тонкой кишки
- •Моторная функция толстой кишки
- •Регуляция моторики желудочно-кишечного тракта
- •Акт дефекации и его регуляция
- •Методы изучения функций пищеварительного тракта
- •Физиологические основы голода и насыщения
- •Фармакологическая коррекция нарушений пищеварительной системы
- •Лекарственные средства, применяемые при нарушениях моторной функции пищеварительного тракта
- •Всасывание
- •Механизмы всасывания
- •Всасывание белков
- •Всасывание углеводов
- •Всасывание жиров
- •Всасывание витаминов
- •Всасывание воды и электролитов
- •Всасывание лекарственных препаратов
- •Пищеварительная функция печени
- •Состав желчи
- •Функции желчи
- •Регуляция желчеотделения и желчевыделения
- •Непищеварительные функции печени
- •Биотрансформация лекарственных препаратов в печени
- •Гепатотропные средства
- •Глава 10 обмен веществ и энергии
- •Превращение и использование энергии
- •Энергетический эквивалент пищи
- •Определение уровня метаболизма
- •Основной обмен
- •Правило поверхности
- •Суточный расход энергии
- •Обмен веществ
- •Обмен белков
- •Обмен липидов
- •Обмен углеводов
- •Обмен воды и минеральных веществ
- •Питание
- •Теоретические основы питания
- •Принципы составления пищевых рационов
- •Фармакологические средства, влияющие на процессы обмена веществ
- •Глава 11 терморегуляция
- •Температура тела и тепловой баланс
- •Химическая терморегуляция
- •Физическая терморегуляция
- •Температура тела человека и ее измерение
- •Внутренние области тела
- •Система терморегуляции
- •Рефлекторные и гуморальные механизмы терморегуляции Терморецепторы
- •Центры терморегуляции
- •Участие эффекторов в регуляции температуры
- •Терморегуляция при изменениях температуры внешней среды Холодовое воздействие
- •Тепловое воздействие
- •Адаптация к длительным изменениям температуры
- •Гипотермия и гипертермия. Лихорадка
- •Влияние фармакологических препаратов на температуру тела
- •Глава 12 выделение. Физиология почек
- •Функции почек
- •Строение нефрона
- •Кровоснабжение почек
- •Юкстагломерулярный аппарат
- •Механизмы мочеобразования
- •Клубочковая фильтрация
- •Канальцевая реабсорбция
- •Канальцевая секреция
- •Количество, состав и свойства мочи
- •Регуляция объема внутрисосудистой и внеклеточной жидкости
- •Регуляция осмотического давления крови
- •Регуляция ионного состава крови
- •Регуляция кислотно-основного состояния
- •Инкреторная функция почек
- •Регуляция артериального давления
- •Метаболическая функция почек
- •Нейрогуморальная регуляция деятельности Нервная регуляция
- •Гуморальная регуляция
- •Мочевыведение, мочеиспускание и их регуляция
- •Фармакологические влияния на выделительную систему
- •Глава 13 физиология анализаторов
- •Общие представления об анализаторах
- •Классификация рецепторов
- •Свойства рецепторов
- •Кодирование информации в рецепторах
- •Частная физиология анализаторов Зрительный анализатор
- •Оптическая система глаза
- •Аномалии рефракции
- •Световоспринимающий или, рецепторный , аппарат глаза
- •Проводящие пути зрительного анализатора
- •Цветовое зрение
- •Восприятие пространства
- •Слуховой анализатор
- •Механизм передачи звуковых колебаний
- •Проводящие пути и центры слухового анализатора
- •Электрические явления в улитке
- •Механизм восприятия звуков различной частоты
- •Слуховая адаптация
- •Пространственный слух
- •Пределы слышимости, острота слуха
- •Вестибулярный анализатор
- •Проводящие пути и центры вестибулярного анализатора
- •Чувствительность вестибулярного анализатора
- •Обонятельный анализатор
- •Проводящие пути и центры обонятельного анализатора
- •Вкусовой анализатор
- •Соматовисцеральная сенсорная система
- •Кожный анализатор
- •Тактильная чувствительность
- •Проводящие пути тактильного анализатора
- •Пороги тактильных ощущений
- •Температурная чувствительность
- •Висцеральный анализатор
- •Проприоцептивный анализатор
- •Болевая чувствительность
- •Типы боли
- •Ноцицепторы
- •Проводящие пути болевой чувствительности
- •Гуморальная регуляция боли
- •Отраженная боль
- •Фантомная боль
- •Антиноцицептивная система
- •Аналгезирующие средства
- •Глава 14 высшая нервная деятельность
- •Условные рефлексы
- •Правила выработки условных рефлексов
- •Условные рефлексы второго, третьего и более высоких порядков
- •Динамический стереотип
- •Торможение условных рефлексов
- •Безусловное торможение
- •Условное торможение (внутреннее)
- •Запредельное торможение
- •Иррадиация, концентрация и индукция возбуждения и торможения
- •Аналитическая и синтетическая деятельность коры головного мозга
- •Свойства нервных процессов
- •Типы высшей нервной деятельности
- •Экспериментальные неврозы
- •Первая и вторая сигнальные системы
- •Высшие психические функции
- •Мотивации
- •Сознание
- •Соотношение сознания и подсознания
- •Физиология сна
- •Функциональная система поведения
- •Фармакологические средства, влияющие на психическую деятельность
- •Глава 1. История физиологии. Методы физиологических
- •Глава 2. Физиология возбудимых тканей (в.И.Торшин) 15
- •Глава 3. Физиология центральной нервной системы 43
- •Глава 4. Вегетативная (автономная) нервная система
- •Глава 5. Железы внутренней секреции (н.В.Ермакова) 111
- •Глава 6. Физиология крови (н.В.Ермакова) ….139
- •Глава 7. Крово- и лимфообращение (и.Г.Власова) 166
- •Глава 8. Физиология дыхания (н.А.Агаджанян) 209
- •Глава 9. Пищеварение (н.В.Ермакова) 237
- •Глава 10. Обмен веществ и энергии (в.И.Торшин) 279
- •Глава 11. Терморегуляция (в.И.Торшин) 295
- •Глава 12. Выделение. Физиология почек
- •Глава 13. Физиология анализаторов (и.Г.Власова) 338
- •Глава 14. Высшая нервная деятельность {в.И.Торшин) 373
Канальцевая реабсорбция
Первичная моча превращается в конечную благодаря процессам, которые происходят в почечных канальцах и собирательных трубочках. В почке человека за сутки образуется 150 — 180 л фильтрата, или первичной мочи, а выделяется 1,0 — 1,5 л мочи. Остальная жидкость всасывается в канальцах и собирательных трубочках. Канальцевая реабсорбция — это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь. Основной смысл реабсорбции состоит в том, чтобы сохранить организму все жизненно важные вещества в необходимых количествах. Обратное всасывание происходит во всех отделах нефрона. Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, С1ˉ, НСОˉ и многие другие вещества. В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода. Ранее считали, что реабсорбция в проксимальной части канальца является обязательной и нерегулируемой. В настоящее время доказано, что она регулируется как нервными, так и гуморальными факторами.
Обратное всасывание различных веществ в канальцах может происходить пассивно и активно. Пассивный транспорт происходит без затраты энергии по электрохимическому, концентрационному или осмотическому градиентам. С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины. Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na+, K+ — АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.
Глюкоза. Она поступает из просвета канальца в клетки проксимального канальца с помощью специального переносчика, который должен обязательно присоединить ион Na+. Перемещение этого комплекса внутрь клетки осуществляется пассивно по электрохимическому и концентрационному градиентам для ионов Na+. Низкая концентрация натрия в клетке, создающая градиент его концентрации между наружной и внутриклеточной средой, обеспечивается работой натрий-калиевого насоса базальной мембраны. В клетке этот комплекс распадается на составные компоненты. Внутри почечного эпителия создается высокая концентрация глюкозы, поэтому в дальнейшем по градиенту концентрации глюкоза переходит в интерстициальную ткань. Этот процесс осуществляется с участием переносчика за счет облегченной диффузии. Далее глюкоза уходит в кровоток. В норме при обычной концентрации глюкозы в крови и, соответственно, в первичной моче вся глюкоза реабсорбируется. При избытке глюкозы в крови, а значит, в первичной моче может произойти максимальная загрузка канальцевых систем транспорта, т.е. всех молекул-переносчиков. В этом случае глюкоза больше не сможет реабсорбироваться и появится в конечной моче (глюкоэурия). Эта ситуация характеризуется понятием «максимальный канальцевый транспорт» (Тм). Величине максимального канальцевого транспорта соответствует старое понятие «почечный порог выведениям. Для глюкозы эта величина составляет 10 ммоль/л.
Вещества, реабсорбция которых не зависит от их концентрации в плазме крови, называются непороговыми. К ним относятся вещества, которые или вообще не реабсорбируются, (инулин, маннитол) или мало реабсорбируются и выделяются с мочой пропорционально накоплению их в крови (сульфаты).
Аминокислоты. Реабсорбция аминокислот происходит также по механизму сопряженного с Na+ транспорта. Профильтровавшиеся в клубочках аминокислоты на 90% реабсорбируются клетками проксимального канальца почки. Этот процесс осуществляется с помощью вторично-активного транспорта, т.е. энергия идет на работу натриевого насоса. Выделяют не менее 4 транспортных систем для переноса различных аминокислот (нейтральных, двуосновных, дикарбоксильных и иминокислот). Эти же системы транспорта действуют и в кишечнике для всасывания аминокислот. Описаны генетические дефекты, когда определенные аминокислоты не реабсорбируются и не всасываются в кишечнике.
Белок. В норме небольшое количество белка попадает в фильтрат и реабсорбируется. Процесс реабсорбции белка осуществляется с помощью пиноцитоза. Эпителий почечного канальца активно захватывает белок. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизосом и превращается в аминокислоты. Не все белки подвергаются гидролизу, часть их переходит в кровь в неизмененном виде. Этот процесс активный и требует энергии. За сутки с конечной мочой уходит не более 20 — 75 мг белка. Появление белка в моче носит название протеинурии. Протеинурия может быть и в физиологических условиях, например, после тяжелой мышечной работы. В основном протеинурия имеет место в патологии при нефритах, нефропатиях, при миеломной болезни.
Мочевина. Она играет важную роль в механизмах концентрирования мочи, свободно фильтруется в клубочках. В проксимальном канальце часть мочевины пассивно реабсорбируется за счет градиента концентрации, который возникает вследствие концентрирования мочи. Остальная часть мочевины доходит до собирательных трубочек. В собирательных трубочках под влиянием АДГ происходит реабсорбция воды и концентрация мочевины повышается. АДГ усиливает проницаемость стенки и для мочевины, и она переходит в мозговое вещество почки, создавая здесь примерно 50% осмотического давления. Из интерстиция по концентрационному градиенту мочевина диффундирует в петлю Генле и вновь поступает в дистальные канальцы и собирательные трубочки. Таким образом совершается внутрипочечный круговорот мочевины. В случае водного диуреза всасывание воды в дистальном отделе нефрона прекращается, а мочевины выводится больше. Таким образом ее экскреция зависит от диуреза.
Слабые органические кислоты и основания. Реабсорбция слабых кислот и оснований зависит от того, в какой форме они находятся — в ионизированной или неионизированной. Слабые основания и кислоты в ионизированном состоянии не реабсорбируются и выводятся с мочой. Степень ионизации оснований увеличивается в кислой среде, поэтому они с большей скоростью экскретируются с кислой мочой, слабые кислоты, напротив, быстрее выводятся с щелочной мочой. Это имеет большое значение, так как многие лекарственные вещества являются слабыми основаниями или слабыми кислотами. Поэтому при отравлении ацетилсалициловой кислотой или фенобарбиталом (слабыми кислотами) необходимо вводить щелочные растворы (NaHCO3), для того чтобы перевести эти кислоты в ионизированное состояние, тем самым способствуя их быстрому выведению из организма. Для быстрой экскреции слабых оснований необходимо вводить в кровь кислые продукты для закисления мочи.
Вода и электролиты. Вода реабсорбируется во всех отделах нефрона. В проксимальных извитых канальцах реабсорбируется около 2/3 всей воды. Около 15% реабсорбируется в петле Генле и 15% — в дистальных извитых канальцах и собирательных трубочках. Вода реабсорбируется пассивно за счет транспорта осмотически активных веществ: глюкозы, аминокислот, белков, ионов натрия, калия, кальция, хлора. При снижении реабсорбции осмотически активных веществ уменьшается и реабсорбция воды. Наличие глюкозы в конечной моче ведет к увеличению диуреза (лолиурии).
Основным ионом, обеспечивающим пассивное всасывание воды, является натрий. Натрий, как указывалось выше, также необходим для транспорта глюкозы и аминокислот. Кроме того, он играет важную роль в создании осмотически активной среды в интерстиции мозгового слоя почки, благодаря чему происходит концентрирование мочи. Реабсорбция натрия совершается во всех отделах нефрона. Около 65% ионов натрия реабсорбируется в проксимальных канальцах, 25% — в петле нефрона, 9% — в дистальном извитом канальце и 1% — в собирательных трубочках.
Поступление натрия, из первичной мочи через апикальную мембрану внутрь клетки канальцевого эпителия происходит пассивно по электрохимическому и концентрационному градиентам. Выведение натрия из клетки через базолатеральные мембраны осуществляется активно с помощью Na+, K+ — АТФазы. Так как энергия клеточного метаболизма расходуется на перенос натрия, транспорт его является первично-активным. Транспорт натрия в клетку может происходить за счет разных механизмов. Один из них — это обмен Na+ на Н+ (противоточный транспорт, или антипорт). В этом случае ион натрия переносится внутрь клетки, а ион водорода — наружу. Другой путь переноса натрия в клетку осуществляется с участием аминокислот, глюкозы. Это так называемый котранспорт, или симпорт. Частично реабсорбция натрия связана с секрецией калия.
Сердечные гликозиды (строфантин К, оубаин) способны угнетать фермент Na+, K+ — АТФазу, обеспечивающую перенос натрия из клетки в кровь и транспорт калия из крови в клетку.
Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа так называемой поворотно-противоточной множительной системы. Поворотно-противоточная система представлена параллельно расположенными коленами петли Генле и собирательной трубочкой, по которым жидкость движется в разных направлениях (противо-точно). Эпителий нисходящего отдела петли пропускает воду, а эпителий восходящего колена непроницаем для воды, но способен активно переносить ионы натрия в тканевую жидкость, а через нее обратно в кровь. В проксимальном отделе происходит всасывание натрия и воды в эквивалентных количествах и моча здесь изотонична плазме крови. В нисходящем отделе петли нефрона реабсорбируется вода и моча становится более концентрированной (гипертонической). Отдача воды происходит пассивно за счет того, что в восходящем отделе одновременно осуществляется активная реабсорбция ионов натрия. Поступая в тканевую жидкость, ионы натрия повышают в ней осмотическое давление, тем самым способствуя притягиванию в тканевую жидкость воды из нисходящего отдела. В то же время повышение концентрации мочи в петле нефрона за счет реабсорбции воды облегчает переход натрия из мочи в тканевую жидкость. Так как в восходящем отделе петли Генле реабсорбируется натрий, моча становится гипотоничной. Поступая далее в собирательные трубочки, представляющие собой третье колено противоточной системы, моча может сильно концентрироваться, если действует АДГ, повышающий проницаемость стенок для воды. В данном случае по мере продвижения по собирательным трубочкам в глубь мозгового вещества все больше и больше воды выходит в межтканевую жидкость, осмотическое давление которой повышено вследствие содержания в ней большого количества Na+ и мочевины, и моча становится все более концентрированной.
При поступлении больших количеств воды в организм почки, наоборот, выделяют большие объемы гипотонической мочи.