
- •Теоретична частина
- •1. Вимірювання. Класифікація вимірювань
- •2. Похибки виміювання
- •2.1. Класифікація похибок вимірювання
- •2.2. Похибки засобів вимірювання
- •3. Обробка результатів вимірювання
- •3.1. Прямі вимірювання
- •3.2. Оцінка випадкових похибок опосередкованих вимірювань Опосередковані вимірювання – це вимірювання, при яких шукане значення q знаходять на основі відомої залежності
- •3.3. Оцінка випадкових похибок сукупних та сумісних вимірювань
- •Практична частина Завдання 1
- •Розв’язання
- •Завдання 2.
- •Розв’язання:
- •Завдання 3.
- •Розв’язання:
- •Завдання 4
- •Розв’язання:
- •Завдання 5
- •Розв'язання:
- •Завдання 6
- •Розв’язання
- •Завдання на на контрольну роботу
- •Література
2.2. Похибки засобів вимірювання
Різні види засобів вимірювання виконують різні функції, причому кожному з них приписують деякі номінальні характеристики. Дійсні характеристики засобів вимірювання не співпадають з номінальними, що і визначає їх похибки.
Похибки засобів вимірювання представляють у вигляді абсолютних, відносних чи зведених похибок.
Абсолютною похибкою засобу вимірювання називають різницю між показом засобу вимірювань та істинним значенням вимірюваної величини за відсутності методичних похибок і похибок від взаємодії засобу вимірювання за об’єктом вимірювання.
Δзв = Хзв – Хі.
Відносною похибкою засобу вимірювання називають відношення абсолютної похибки засобів вимірювань до істинного значення вимірюваної величини.
δзв[%] = (Δ зв/Хі ) 100%.
Щоб було можливим порівнювати за точністю різні прилади з різними границями вимірювань, введено поняття зведеної похибки вимірювального приладу.
Зведена похибка засобу вимірювань називають відношення абсолютної похибки засобу вимірювань до нормованого значення.
γ[%] = (Δ зв/Хн ) 100%,
де Хн – нормоване значення.
Похибки засобів вимірювання містять ряд систематичних і випадкових складових, статичні та динамічні похибки, які визначаються аналогічно визначенням похибок вимірювань.
Щоб наперед оцінити похибку, яку внесе дане устаткування в кінцевий результат, користуються нормованими значеннями похибки. Під нормованим значенням розуміють похибки, які є граничними для даного типу засобів вимірювання. Стандартами регламентуються способи нормування і форми вираження допустимих границь похибок.
Границею допустимої похибки засобу вимірювань називають найбільше значення без урахування знаку похибки засобу вимірювання, за яким цей засіб ще може бути визнаний придатним до застосування.
Адитивна похибка – складова абсолютної похибки засобу вимірювальної техніки, яка не залежить від вимірювальної величини.
Мультиплікативна – складова похибки засобу вимірювання, яка пропорційна вимірювальній величині.
Для нормування похибок засобів вимірювальної техніки з адитивною і мультиплікативною похибками найбільш поширеною формою запису є:
δн = ±[c + d·(|Хн/Х| - 1)],
де Хн – нормоване значення,
с,d – постійні числа.
Суть с полягає у тому, що це є границя допустимої відносної похибки при максимальному показі приладу, d – межа допустимої похибки при нульовому показанні приладу, яка виражена у відсотках до верхньої межі вимірювання, [(Хн/Х) – 1] – зростання відносної похибки при зменшенні показань приладу.
Узагальненою характеристикою засобу вимірювальної техніки є клас точності, що виражається границями його допустимих основної і додаткових похибок а також іншими характеристиками, що впливають на його точність, значення яких регламентується.
Клас точності характеризує точність засобу вимірювання, але не є безпосередньою характеристикою точності вимірювання, виконаного за допомогою даного засобу вимірювання.
В основу присвоєння класу точності береться основна похибка засобу вимірювання і спосіб її вираження. Якщо основна похибка виражається в одиницях вимірюваної величини або в поділках шкали, то класи точності позначають порядковими номерами. Номери визначаються відповідними стандартами.
Для засобів вимірювання, відлікові пристрої яких градуюються у логарифмічних одиницях, позначення класів точності зберігається з граничними значеннями допустимих похибок.
Якщо границі допустимої основної похибки задаються відносною або зведеною похибкою, то позначення класів точності вибирають із наведеного раніше ряду.
Якщо границі допустимої основної похибки залежать від значення вимірюваної величини, наприклад 0,02/0,01.