
- •Берестов в.Л.,
- •Часть 1 Общая теория статистики
- •Общее представление о статистике и история её возникновения
- •Предмет статистики как науки и её категории
- •Организация статистической деятельности в Российской Федерации
- •Сущность статистического наблюдения и предъявляемые к нему требования
- •Программно-методологическое и организационное обеспечение статистического наблюдения
- •Формы, виды и способы наблюдения
- •2.4 Ошибки наблюдения и методы их контроля
- •3.1 Сущность статистической сводки и её организация
- •3.2 Классификации в статистической практике
- •3. 3 Виды статистических группировок и принципы их построения
- •3.4 Статистические ряды распределения
- •3.5 Способы изложения и наглядного представления статистических данных
- •4.1 Классификация статистических показателей (величин)
- •4.2 Абсолютные и относительные показатели
- •Средние величины
- •Средняя арифметическая простая
- •Средняя арифметическая взвешенная
- •Определение средней арифметической взвешенной по интервальному ряду
- •Средняя гармоническая простая
- •Средняя гармоническая взвешенная
- •Порядок выбора формы средней взвешенной величины
- •Средняя хронологическая
- •Средняя геометрическая
- •Средняя квадратическая
- •4.4 Сопоставимость статистических показателей
- •5.1 Вариация признака и технология определения её показателей
- •5.2 Правило сложения дисперсий
- •5.3 Понятие нормального распределения
- •5.4 Исследование формы распределения элементов совокупности
- •6.1 Сущность, условия проведения и задачи выборочного исследования
- •6.2 Постановка задачи выборочного исследования
- •6.3 Способы формирования выборочной совокупности
- •6.4 Ошибки выборки
- •6.5 Виды выборки и определение ее численности
- •Понятие о малой выборке
- •Способы распространения результатов выборочного наблюдения на генеральную совокупность
- •Проверка статистических гипотез
- •Ряды динамики и их классификация
- •7.2 Показатели анализа рядов динамики
- •7.3 Изучение тенденции развития явлений (процессов)
- •7.4 Анализ сезонных колебаний
- •7.5 Прогнозирование в рядах динамики
- •Индексы: их сущность и назначение
- •8.2 Индивидуальные индексы и их применение в экономическом анализе
- •Общие индексы и их применение в анализе
- •Агрегатная форма общих индексов количественных и качественных показателей
- •Агрегатная форма общих индексов смешанных показателей
- •Средневзвешенные индексы
- •8.5 Общие индексы средних величин
- •8.6 Цепные и базисные индексы
- •Основные понятия корреляционного и регрессионного анализа
- •9.2 Регрессионный анализ
- •9.3 Корреляционный анализ
- •9.4 Анализ связи между атрибутивными признаками
- •Часть 2 Социально-экономическая статистика
- •Статистический учет населения
- •11.1 Основные показатели численности населения
- •11.2 Анализ естественного движения и миграции населения
- •12.1 Понятие уровня жизни, номинальных и реальных денежных доходов
- •12. 2 Методы изучения дифференциации доходов и уровня бедности
- •12.3 Показатели статистики бедности
- •Понятие трудовых ресурсов, их состав и статистическое изучение
- •Баланс трудовых ресурсов и его структура
- •Относительные показатели, характеризующие рынок труда
- •Персонал предприятия: понятие, структура и основные категории
- •Количественные характеристики персонала предприятия
- •1 253 3 250
- •14. 3 Баланс движения кадров и показатели оценки интенсивности их оборота
- •Задача 14.2 Определите среднесписочное, среднеявочное число работников и коэффициент использования списочного состава работников за ноябрь 2013 г. По каждой фирме.
- •Задача 14.3
- •16.2 Индексный метод анализа динамики производительности труда
- •Задача 16.1
- •Задача 16.2
- •Задача 16.3
- •Задача 16.4
- •Задача 16.5
- •Задача 16.6
- •Задача 16.7
- •Задача 16.8
- •Упражнения и задачи
- •Контрольные вопросы
- •Тема №18
- •18.1 Социально-экономическая сущность национального богатства
- •18.2 Социально-экономическая сущность основного капитала и основных фондов и задачи их статистической характеристики
- •18. 3 Натурально-вещественная (видовая) классификация основных фондов
- •18.4 Виды оценки основных фондов
- •18.5 Показатели простого и расширенного воспроизводства основных фондов
- •18.6 Балансовый метод изучения воспроизводства основных фондов
- •19.1 Понятие оборотных средств и их структура
- •Показатели оценки эффективности использования оборотных средств
- •Социально-экономическая сущность инвестиций и задачи их статистического изучения
- •20.2 Показатели статистики инвестиций и методология их исчисления
- •20. 3 Показатели оценки интенсивности инвестиционных процессов
- •20.4 Система показателей оценки эффективности инвестиционных проектов
- •2. Индекс рентабельности (индекс доходности) - pi :
- •20.5 Эффективность инвестиций в отдельные отрасли
- •22.1 Показатели оценки финансовых результатов деятельности предприятий
- •22.2 Показатели финансовой устойчивости предприятий
- •23.1 Понятие системы национальных счетов
- •Основные категории и классификации системы национальных счетов
- •I. Текущие налоги.
- •23.3 Исчисление основных показателей экономической деятельности на макроуровне
- •23.4 Методы измерения валового внутреннего продукта
- •23.5 Исчисление показателей системы национальных счетов в постоянных ценах
- •23.6 Система ключевых счетов снс и общие принципы их построения
- •1 2 3 4 5 6
- •7 8 9 10
- •Список рекомендуемой литературы
- •Постановление Правительства рф от 2 июня 2008 г. N 420 «о Федеральной службе государственной статистики».
- •Глоссарий
- •Берестов виктор ларионович
Основные понятия корреляционного и регрессионного анализа
Исследуя природу, общество, экономику, необходимо считаться со взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания так или иначе определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействия одних факторов на другие является одной из основных задач статистики.
Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и стохастическую (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции. Достаточно часто функциональная связь проявляется в физике, химии. В экономике примером может служить прямо пропорциональная зависимость между производительностью труда и объемом произведенной продукции.
Стохастическая связь (которую также называют неполной, или статистической), когда каждому отдельному значению факторного признака х отвечает определенное множество значений результативного признака у.
Разновидностью стохастической
связи является корреляционная зависимость,
которая предопределяет корреляционную
зависимость между признаками. При такой
зависимости с изменением факторного
признака х
изменяются групповые средние
результативного признака у
и вместо условных распределений множеств
значений признака у
выступают средние значения этих
распределений
Объяснение тому – сложность взаимосвязей
между анализируемыми факторами, на
взаимодействие которых влияют неучтенные
случайные величины. Поэтому связь между
признаками проявляется лишь в среднем,
в массе случаев. При корреляционной
связи каждому значению аргумента
соответствуют случайно распределенные
в некотором интервале значения функции.
Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений. Очевидно, что последние участвуют в формировании урожая. Но для каждого конкретного поля, участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается – увеличение массы внесенных удобрений ведет к росту урожайности.
По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых рост последнего сопровождается уменьшением функции. Такие связи также можно назвать, соответственно, положительными и отрицательными.
Относительно своей аналитической формы связи бывают линейными и нелинейными. В первом случае между признаками в среднем проявляются линейные соотношения. Нелинейная взаимосвязь выражается нелинейной функцией, а переменные связаны между собой в среднем нелинейно.
Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные – множественной.
Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна.
По силе различаются слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей.
В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.
Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.
Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов, оказывающих наибольшее влияние на результативный признак.
Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значений зависимой переменной.
Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.
Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.
Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – и принято называть корреляционными.
Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.
Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы:
\ Y \ X \ |
Y1 |
Y2 |
... |
Yz |
Итого |
Yi |
X1 |
f11 |
12 |
... |
f1z |
|
|
X2 |
f21 |
22 |
... |
f2z |
|
|
... |
... |
... |
... |
... |
... |
... |
Xk |
fk1 |
k2 |
... |
fkz |
|
|
Итого |
|
|
... |
|
n |
|
|
|
|
... |
|
|
- |
В основу группировки положены два изучаемых во взаимосвязи признака – Х и У. Частоты fij показывают количество соответствующих сочетаний Х и У. Если fij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания fij допустимо утверждать о связи между Х и У. При этом, если fij концентрируется около одной из двух диагоналей, имеет место прямая или обратная линейная связь.
Корреляционная связь между признаками х и у записывается в виде уравнения корреляционной связи, или уравнения регрессии:
где f(x) – определенный вид функции корреляционной связи, которая описывает линию регрессии.
Определение корреляционной связи между признаками занимает важное место в исследованиях социально-экономических явлений в экономике и управлении. Содержание такой связи отражает теория корреляции. Основоположником этой теории являются английские ученые-биологи Ф.Гамильтон и К.Пирсон. Термин «корреляция» заимствован из естествознания и означает соотношение, соответствие между переменными в уравнении регрессии.
В основе теории корреляции лежит корреляционно-регрессионный анализ (КРА), суть которого заключается в выборе вида уравнения регрессии, вычислении его параметров и установлении адекватности (соответствия) теоретической зависимости фактическим данным, представленным в табличной форме. Наличие такой теоретической зависимости значительно облегчает анализ экономических явлений, дает возможность установления прогноза на будущее.