
- •Берестов в.Л.,
- •Часть 1 Общая теория статистики
- •Общее представление о статистике и история её возникновения
- •Предмет статистики как науки и её категории
- •Организация статистической деятельности в Российской Федерации
- •Сущность статистического наблюдения и предъявляемые к нему требования
- •Программно-методологическое и организационное обеспечение статистического наблюдения
- •Формы, виды и способы наблюдения
- •2.4 Ошибки наблюдения и методы их контроля
- •3.1 Сущность статистической сводки и её организация
- •3.2 Классификации в статистической практике
- •3. 3 Виды статистических группировок и принципы их построения
- •3.4 Статистические ряды распределения
- •3.5 Способы изложения и наглядного представления статистических данных
- •4.1 Классификация статистических показателей (величин)
- •4.2 Абсолютные и относительные показатели
- •Средние величины
- •Средняя арифметическая простая
- •Средняя арифметическая взвешенная
- •Определение средней арифметической взвешенной по интервальному ряду
- •Средняя гармоническая простая
- •Средняя гармоническая взвешенная
- •Порядок выбора формы средней взвешенной величины
- •Средняя хронологическая
- •Средняя геометрическая
- •Средняя квадратическая
- •4.4 Сопоставимость статистических показателей
- •5.1 Вариация признака и технология определения её показателей
- •5.2 Правило сложения дисперсий
- •5.3 Понятие нормального распределения
- •5.4 Исследование формы распределения элементов совокупности
- •6.1 Сущность, условия проведения и задачи выборочного исследования
- •6.2 Постановка задачи выборочного исследования
- •6.3 Способы формирования выборочной совокупности
- •6.4 Ошибки выборки
- •6.5 Виды выборки и определение ее численности
- •Понятие о малой выборке
- •Способы распространения результатов выборочного наблюдения на генеральную совокупность
- •Проверка статистических гипотез
- •Ряды динамики и их классификация
- •7.2 Показатели анализа рядов динамики
- •7.3 Изучение тенденции развития явлений (процессов)
- •7.4 Анализ сезонных колебаний
- •7.5 Прогнозирование в рядах динамики
- •Индексы: их сущность и назначение
- •8.2 Индивидуальные индексы и их применение в экономическом анализе
- •Общие индексы и их применение в анализе
- •Агрегатная форма общих индексов количественных и качественных показателей
- •Агрегатная форма общих индексов смешанных показателей
- •Средневзвешенные индексы
- •8.5 Общие индексы средних величин
- •8.6 Цепные и базисные индексы
- •Основные понятия корреляционного и регрессионного анализа
- •9.2 Регрессионный анализ
- •9.3 Корреляционный анализ
- •9.4 Анализ связи между атрибутивными признаками
- •Часть 2 Социально-экономическая статистика
- •Статистический учет населения
- •11.1 Основные показатели численности населения
- •11.2 Анализ естественного движения и миграции населения
- •12.1 Понятие уровня жизни, номинальных и реальных денежных доходов
- •12. 2 Методы изучения дифференциации доходов и уровня бедности
- •12.3 Показатели статистики бедности
- •Понятие трудовых ресурсов, их состав и статистическое изучение
- •Баланс трудовых ресурсов и его структура
- •Относительные показатели, характеризующие рынок труда
- •Персонал предприятия: понятие, структура и основные категории
- •Количественные характеристики персонала предприятия
- •1 253 3 250
- •14. 3 Баланс движения кадров и показатели оценки интенсивности их оборота
- •Задача 14.2 Определите среднесписочное, среднеявочное число работников и коэффициент использования списочного состава работников за ноябрь 2013 г. По каждой фирме.
- •Задача 14.3
- •16.2 Индексный метод анализа динамики производительности труда
- •Задача 16.1
- •Задача 16.2
- •Задача 16.3
- •Задача 16.4
- •Задача 16.5
- •Задача 16.6
- •Задача 16.7
- •Задача 16.8
- •Упражнения и задачи
- •Контрольные вопросы
- •Тема №18
- •18.1 Социально-экономическая сущность национального богатства
- •18.2 Социально-экономическая сущность основного капитала и основных фондов и задачи их статистической характеристики
- •18. 3 Натурально-вещественная (видовая) классификация основных фондов
- •18.4 Виды оценки основных фондов
- •18.5 Показатели простого и расширенного воспроизводства основных фондов
- •18.6 Балансовый метод изучения воспроизводства основных фондов
- •19.1 Понятие оборотных средств и их структура
- •Показатели оценки эффективности использования оборотных средств
- •Социально-экономическая сущность инвестиций и задачи их статистического изучения
- •20.2 Показатели статистики инвестиций и методология их исчисления
- •20. 3 Показатели оценки интенсивности инвестиционных процессов
- •20.4 Система показателей оценки эффективности инвестиционных проектов
- •2. Индекс рентабельности (индекс доходности) - pi :
- •20.5 Эффективность инвестиций в отдельные отрасли
- •22.1 Показатели оценки финансовых результатов деятельности предприятий
- •22.2 Показатели финансовой устойчивости предприятий
- •23.1 Понятие системы национальных счетов
- •Основные категории и классификации системы национальных счетов
- •I. Текущие налоги.
- •23.3 Исчисление основных показателей экономической деятельности на макроуровне
- •23.4 Методы измерения валового внутреннего продукта
- •23.5 Исчисление показателей системы национальных счетов в постоянных ценах
- •23.6 Система ключевых счетов снс и общие принципы их построения
- •1 2 3 4 5 6
- •7 8 9 10
- •Список рекомендуемой литературы
- •Постановление Правительства рф от 2 июня 2008 г. N 420 «о Федеральной службе государственной статистики».
- •Глоссарий
- •Берестов виктор ларионович
7.2 Показатели анализа рядов динамики
При изучении явления во времени перед исследователем встает проблема описания интенсивности изменения и расчета средних показателей динамики. Решается она путем построения соответствующих показателей. Для характеристики интенсивности изменения во времени такими показателями будут:
- абсолютный прирост,
- темпы роста,
- темпы прироста,
- абсолютное значение одного процента прироста.
Расчет показателей динамики представлен в таблице 7.4.
Таблица 7.4 – Алгоритм расчета показателей динамики
Показатель |
Базисный |
Цепной |
Абсолютный
прирост |
Yi-Y0 |
Yi-Yi-1 |
Коэффициент роста (Кр) |
Yi : Y0 |
Yi : Yi-1 |
Темп роста (Тр) |
(Yi : Y0)×100 |
(Yi : Yi-1)×100 |
Коэффициент прироста (Кпр ) |
|
|
Темп прироста (Тпр) |
|
|
Абсолютное значение одного процента прироста (А) |
|
|
В случае, когда сравнение проводится с периодом (моментом) времени, начальным в ряду динамики, получают базисные показатели. Если же сравнение производится с предыдущим периодом или моментом времени, то говорят о цепных показателях.
Система средних показателей динамики включает: средний уровень ряда, средний абсолютный прирост, средний темп роста, средний темп прироста.
Средний уровень ряда –это показатель, обобщающий итоги развития явления за единичный интервал или момент из имеющейся временной последовательности. Расчет среднего уровня ряда динамики определяется видом этого ряда и величиной интервала, соответствующего каждому уровню.
Для интервальных
рядов с равными
периодами времени средний
уровень
рассчитывается
следующим образом:
(7.1)
где n– общая длина временного ряда или общее число равных временных отрезков, каждому из которых соответствует свой уровень Yi (1 = 1, 2, ..., n).
Для моментных
рядов с равностоящими
уровнями средний
уровень
рассчитывается в предположении, что в
пределах каждого периода, разделяющего
моментные наблюдения, развитие явления
происходило по линейному закону. Тогда
общий средний уровень вычисляется по
формуле средней хронологической:
(7.2)
Средний абсолютный приростпоказывает, на сколько единиц в среднем увеличивался или уменьшался каждый уровень ряда по сравнению с предыдущим за ту или иную единицу времени (в среднем ежемесячно, ежегодно и т.п.).
Средний абсолютный прирост характеризует среднюю абсолютную скорость роста (или снижения) уровня ряда. Его рассчитывают в зависимости от исходных данных следующими способами:
как простую среднюю арифметическую из абсолютных приростов (цепных) за последовательные промежутки времени:
(7.3)
как частное от деления базисного абсолютного прироста конечного уровня ряда на продолжительность периода:
(7.4)
через накопленный (базисный) абсолютный прирост:
(7.5)
Средний коэффициент роста (снижения) показывает, во сколько раз в среднем за единицу времени изменяется уровень ряда динамики. Для его вычисления используется формула средней геометрической в предположении, что соблюдается равенство фактического отношения конечного уровня к начальному при замене фактических темпов на средние. В зависимости от наличия исходных данных расчет проводят следующим образом:
если исходной информацией служат цепные коэффициенты роста, то формула имеет вид:
, где П – произведение цепных показателей динамики.
Через базисный коэффициент роста конечного периода:
(7.6)
Если известны уровни динамического ряда:
(7.7)
Средний темп роста
представляет собой
средний коэффициент роста, выраженный
в процентах
.
Отсюда среднийтемп
прироста
.
Пример.
Имеются следующие данные (табл. 7.5) о производстве хлеба и хлебобулочных изделий в регионе за сутки:
Таблица 7.5 – Исходные данные
|
2009 |
2010 |
2011 |
2012 |
Хлеб и хлебобулочные изделия, т |
323 |
271 |
278 |
270 |
Определить показатели динамики производства хлеба и хлебобулочных изделий от года к году и средние за весь анализируемый период.
Решение:
Наименование показателя |
Год | ||||
2009 |
2010 |
2011 |
2012 | ||
Абсолютный прирост
|
с переменной базой |
- |
|
|
|
с постоянной базой |
- |
|
|
| |
Коэффициент роста (Кр) |
с переменной базой |
- |
|
|
|
с постоянной базой |
- |
|
|
| |
Темп роста, Тр, % |
с переменной базой |
- |
|
|
|
с постоянной базой |
- |
|
|
| |
Темп прироста, Тпр, % |
с переменной базой |
- |
|
|
|
с постоянной базой |
- |
|
|
| |
Абсолютное значение 1% прироста (снижения) А, т |
с переменной базой |
- |
|
|
|
с постоянной базой |
- |
|
|
|
Средняя величина абсолютного значения
1% прироста (снижения):
Средний уровень интервального ряда динамики:
Средний абсолютный прирост:
Средний коэффициент роста:
или
Средний темп роста:
Средний темп прироста: