
- •Берестов в.Л.,
- •Часть 1 Общая теория статистики
- •Общее представление о статистике и история её возникновения
- •Предмет статистики как науки и её категории
- •Организация статистической деятельности в Российской Федерации
- •Сущность статистического наблюдения и предъявляемые к нему требования
- •Программно-методологическое и организационное обеспечение статистического наблюдения
- •Формы, виды и способы наблюдения
- •2.4 Ошибки наблюдения и методы их контроля
- •3.1 Сущность статистической сводки и её организация
- •3.2 Классификации в статистической практике
- •3. 3 Виды статистических группировок и принципы их построения
- •3.4 Статистические ряды распределения
- •3.5 Способы изложения и наглядного представления статистических данных
- •4.1 Классификация статистических показателей (величин)
- •4.2 Абсолютные и относительные показатели
- •Средние величины
- •Средняя арифметическая простая
- •Средняя арифметическая взвешенная
- •Определение средней арифметической взвешенной по интервальному ряду
- •Средняя гармоническая простая
- •Средняя гармоническая взвешенная
- •Порядок выбора формы средней взвешенной величины
- •Средняя хронологическая
- •Средняя геометрическая
- •Средняя квадратическая
- •4.4 Сопоставимость статистических показателей
- •5.1 Вариация признака и технология определения её показателей
- •5.2 Правило сложения дисперсий
- •5.3 Понятие нормального распределения
- •5.4 Исследование формы распределения элементов совокупности
- •6.1 Сущность, условия проведения и задачи выборочного исследования
- •6.2 Постановка задачи выборочного исследования
- •6.3 Способы формирования выборочной совокупности
- •6.4 Ошибки выборки
- •6.5 Виды выборки и определение ее численности
- •Понятие о малой выборке
- •Способы распространения результатов выборочного наблюдения на генеральную совокупность
- •Проверка статистических гипотез
- •Ряды динамики и их классификация
- •7.2 Показатели анализа рядов динамики
- •7.3 Изучение тенденции развития явлений (процессов)
- •7.4 Анализ сезонных колебаний
- •7.5 Прогнозирование в рядах динамики
- •Индексы: их сущность и назначение
- •8.2 Индивидуальные индексы и их применение в экономическом анализе
- •Общие индексы и их применение в анализе
- •Агрегатная форма общих индексов количественных и качественных показателей
- •Агрегатная форма общих индексов смешанных показателей
- •Средневзвешенные индексы
- •8.5 Общие индексы средних величин
- •8.6 Цепные и базисные индексы
- •Основные понятия корреляционного и регрессионного анализа
- •9.2 Регрессионный анализ
- •9.3 Корреляционный анализ
- •9.4 Анализ связи между атрибутивными признаками
- •Часть 2 Социально-экономическая статистика
- •Статистический учет населения
- •11.1 Основные показатели численности населения
- •11.2 Анализ естественного движения и миграции населения
- •12.1 Понятие уровня жизни, номинальных и реальных денежных доходов
- •12. 2 Методы изучения дифференциации доходов и уровня бедности
- •12.3 Показатели статистики бедности
- •Понятие трудовых ресурсов, их состав и статистическое изучение
- •Баланс трудовых ресурсов и его структура
- •Относительные показатели, характеризующие рынок труда
- •Персонал предприятия: понятие, структура и основные категории
- •Количественные характеристики персонала предприятия
- •1 253 3 250
- •14. 3 Баланс движения кадров и показатели оценки интенсивности их оборота
- •Задача 14.2 Определите среднесписочное, среднеявочное число работников и коэффициент использования списочного состава работников за ноябрь 2013 г. По каждой фирме.
- •Задача 14.3
- •16.2 Индексный метод анализа динамики производительности труда
- •Задача 16.1
- •Задача 16.2
- •Задача 16.3
- •Задача 16.4
- •Задача 16.5
- •Задача 16.6
- •Задача 16.7
- •Задача 16.8
- •Упражнения и задачи
- •Контрольные вопросы
- •Тема №18
- •18.1 Социально-экономическая сущность национального богатства
- •18.2 Социально-экономическая сущность основного капитала и основных фондов и задачи их статистической характеристики
- •18. 3 Натурально-вещественная (видовая) классификация основных фондов
- •18.4 Виды оценки основных фондов
- •18.5 Показатели простого и расширенного воспроизводства основных фондов
- •18.6 Балансовый метод изучения воспроизводства основных фондов
- •19.1 Понятие оборотных средств и их структура
- •Показатели оценки эффективности использования оборотных средств
- •Социально-экономическая сущность инвестиций и задачи их статистического изучения
- •20.2 Показатели статистики инвестиций и методология их исчисления
- •20. 3 Показатели оценки интенсивности инвестиционных процессов
- •20.4 Система показателей оценки эффективности инвестиционных проектов
- •2. Индекс рентабельности (индекс доходности) - pi :
- •20.5 Эффективность инвестиций в отдельные отрасли
- •22.1 Показатели оценки финансовых результатов деятельности предприятий
- •22.2 Показатели финансовой устойчивости предприятий
- •23.1 Понятие системы национальных счетов
- •Основные категории и классификации системы национальных счетов
- •I. Текущие налоги.
- •23.3 Исчисление основных показателей экономической деятельности на макроуровне
- •23.4 Методы измерения валового внутреннего продукта
- •23.5 Исчисление показателей системы национальных счетов в постоянных ценах
- •23.6 Система ключевых счетов снс и общие принципы их построения
- •1 2 3 4 5 6
- •7 8 9 10
- •Список рекомендуемой литературы
- •Постановление Правительства рф от 2 июня 2008 г. N 420 «о Федеральной службе государственной статистики».
- •Глоссарий
- •Берестов виктор ларионович
Средняя квадратическая
Используется в тех случаях, когда при замене индивидуальных значений признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин.
Главная сфера её использования – измерение степени колеблемости индивидуальных значений признака относительно средней арифметической (среднее квадратическое отклонение). Кроме этого, средняя квадратическая применяется в тех случаях, когда необходимо вычислить средний величину признака, выраженного в квадратных или кубических единицах измерения (при вычислении средней величины квадратных участков, средних диаметров труб, стволов и т. д.).
Средняя квадратическая рассчитывается в двух формах:
- как простая
(4.21)
как взвешенная
(4.22)
Все степенные средние различаются между собой значениями показателя степени.При этом, чем выше показатель степени, тем большеколичественное значение среднего показателя:
(4.23)
Это свойство степенных средних называется свойством мажорантности средних.
Таким образом, выбор вида среднего показателя оказывает существенное влияние на его численную величину. Выбор вида средней определяется в каждом отдельном случае путем анализа исследуемой совокупности, изучения содержания явления. Степенная средняя выбрана правильно, если на всех этапах вычислений не меняется её логическая формула, т.е. реально сохраняется социально-экономическое содержание усредняемого признака.
Особый вид средних показателей – структурные средние. Они используются при изучении внутреннего строения рядов распределения значений признака. К ним относятся мода и медиана.
Мода и медиана характеризуют значение признака у статистической единицы, занимающей определенное положение в вариационном ряду.
Мода (Mo) - наиболее часто встречаемое значение признака в совокупности. Мода широко используется в статистической практике при изучении покупательского спроса, регистрации цен и др.
Медиана (Me) - значение признака у статистической единицы, стоящей в середине ранжированного ряда и делящей совокупность на две равные по численности части.
Для дискретных вариационных
рядов Mo
и Me
выбираются в
соответствии с определениями: мода -
как значение признака с наибольшей
частотой\
ni
; положение медианы
при нечетном объеме совокупности
определяется ее номером
,
гдеN
– объем статистической совокупности.
При четном объеме ряда медиана равна
средней из двух вариантов, находящихся
в середине ряда.
Медиану используют как
наиболее надежный показатель типичного
значения неоднородной
совокупности, так как она нечувствительна
к крайним
значениям признака, которые могут
значительно отличаться от
основного массива
его значений. Кроме этого, медиана
находит практическое
применение вследствие особого
математического свойства:
.
Рассмотрим определение моды и медианы на следующем примере:
Имеется ряд распределения рабочих участка по уровню квалификации. Данные приведены в таблице 4.4.
Таблица 4.4 - Распределения рабочих участка по уровню квалификации
№ группы
|
Разряд рабочих
|
Число рабочих
|
Накопленная частота
|
1 |
1 |
3 |
3 |
2 |
2 |
5 |
8 |
3 |
3 |
9 |
17 |
4 |
4 |
14 |
31 |
5 |
5 |
10 |
41 |
6 |
6 |
9 |
50 |
Всего |
- |
50 |
- |
Мода выбирается по максимальному значению частоты: при nmax = 14, Mo = 4, т.е. чаще всего встречается 4-ый разряд. Для нахождения медианы Me определяются центральные единицы (N +1)/2 . Это 25 и 26-ая единицы. По накопленным частотам определяется группа, в которую попадают эти единицы. Это 4-ая группа, в которой значение признака равно 4. Таким образом, Me = 4, это означает, что у половины рабочих разряд ниже 4-го, а у другой – выше четвертого.
В интервальном ряду значения Mo и Me вычисляются более сложным путем.
Мода определяется следующим образом:
• По максимальному значению частоты определяется интервал, в котором находится значение моды. Он называется модальным.
• Внутри модального интервала значение моды вычисляется по формуле:
(4.24)
где
-
нижняя граница модального интервала;
aМо - ширина модального интервала;
nМо , nМо-1, nМо+1 - соответственно частоты модального, предмодального (предшествующего модальному) и постмодального (следующего за модальным) интервалов.
Для расчета медианы в интервальных рядах используется следующий подход:
• По накопленным частотам находится медианный интервал.
Медианным называется интервал, содержащий центральную единицу.
• Внутри медианного интервала значение Me определяется по формуле:
(4.25)
где
-
нижняя граница медианного интервала;
aМе -ширина медианного интервала;
N – объем статистической совокупности;
N Ме-1- накопленная частота предмедианного интервала;
n Ме - частота медианного интервала.
Расчет моды и медианы для интервального ряда распределения рассмотрим на примере ряда распределения рабочих по стажу (табл. 4.5).
Таблица 4.5 - Распределение рабочих участка по стажу
№ группы |
Интервал |
аi |
ni |
Ni | |
|
| ||||
1 |
0 |
4 |
4 |
6 |
6 |
2 |
4 |
8 |
4 |
8 |
14 |
3 |
8 |
12 |
4 |
11 |
25 |
4 |
12 |
16 |
4 |
13 |
28 |
5 |
16 |
20 |
4 |
6 |
44 |
6 |
20 |
24 |
4 |
4 |
48 |
7 |
24 |
28 |
4 |
2 |
50 |
Всего |
0 |
28 |
28 |
50 |
- |
Расчет Mo:
• Максимальная частота nmax = 13, она соответствует четвертой группе, следовательно, модальным является интервал с границами 12 – 16 лет.
• Моду рассчитаем по формуле:
Чаще всего встречаются рабочие со стажем работы около 13 лет.
Мода не находится в середине модального интервала, она смещена к его нижней границе, связано это со структурой данного ряда распределения (частота предмодального интервала значительно больше частоты постмодального интервала).
Расчет медианы:
• По графе накопленных частот определяется медианный интервал. Он содержит 25 и 26-ую статистические единицы, которые находятся в разных группах – в 3-ей и 4-ой. Для нахождения Me можно использовать любую из них. Расчет проведем по 3-ей группе:
Такое же значение Me можно получить при её расчете по 4-ой группе:
При сдвоенном центре Me всегда находится на стыке интервалов, содержащих центральные единицы. Вычисленное значениеMe показывает, что у первых 25 рабочих стаж работы – менее 12 лет, а у оставшихся 25-ти, следовательно, - более 12 лет.
Моду можно определить графически по полигону распределения в дискретных рядах, по гистограмме распределения – в интервальных, а медиану - по кумуляте.
Для нахождения моды в интервальном ряду правую вершину модального прямоугольника нужно соединить с правым верхним углом предыдущего прямоугольника, а левую вершину – с левым верхним углом последующего прямоугольника. Абсцисса точки пересечения этих прямых и будет модой распределения.
Для определение медианы высоту наибольшей ординаты кумуляты, соответствующей общей численности совокупности, делят пополам. Через полученную точку проводят прямую, параллельную оси абсцисс, до пересечения ее с кумулятой. Абсцисса точки пересечения является медианой.
Кроме Mo иMe в вариантных рядах могут быть определены и другие структурные характеристики – квантили. Квантили предназначены для более глубокого изучения структуры ряда распределения.Квантиль – это значение признака, занимающее определенное место в упорядоченной по данному признаку совокупности. Различают следующие виды квантилей:
- квартили – значения признака, делящие упорядоченную совокупность на 4 равные части;
- децили – значения признака, делящие совокупность на 10 равных частей;
- перцентели - значения признака, делящие совокупность на 100 равных частей.
Таким образом, для характеристики положения центра ряда распределения можно использовать 3 показателя: среднее значениепризнака,мода, медиана.
При выборе вида и формы конкретного показателя центра распределения необходимо исходить из следующих рекомендаций:
- для устойчивых социально-экономических процессов в качестве показателя центра используют среднюю арифметическую. Такие процессы характеризуются симметричными распределениями, в которых
= Me
= Mo;
- для неустойчивых процессов положение центра распределения характеризуется с помощью Mo илиMe. Для асимметричных процессов предпочтительной характеристикой центра распределения является медиана, поскольку она занимает положение между средней арифметической и модой.