Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Органическая химия. Часть 1.doc
Скачиваний:
424
Добавлен:
15.05.2015
Размер:
4.51 Mб
Скачать

5.2.2. Нитрование

Нитрование алканов проводится при повышенной температуре с использованием в качестве нитрующего агента разбавленной азотной кислоты или окислов азота.

Реакция протекает по свободнорадикальному цепному механизму. При этом образуется смесь продуктов.

5.2.3. Сульфоокисление и сульфохлорирование

Сульфоокисление и сульфохлорирование алканов протекает также по радикально-цепному механизму при облучении или в присутствии катализаторов, образующих свободные радикалы.

Сульфоокисление:

Сульфохлорирование:

В реакциях сульфоокисления и сульфохлорирования замещению не подвергаются атомы водорода при третичном углероде из-за пространственных затруднений для подхода реагента с большим объемом к третичному атому углерода.

5.3. Методы синтеза алканов

Алканы можно получать в практически неограниченном количестве из природного газа и нефти. Однако выделение индивидуальных углеводородов с увеличением в них числа атомов углерода является трудной задачей, так как при этом резко возрастает число изомерных соединений и одновременно уменьшаются различия в их физических свойствах. Поэтому для получения индивидуальных углеводородов используются синтетические методы.

5.3.1. Гидрирование алкенов и алкинов

Ненасыщенные углеводороды (алкены, алкины, углеводороды с несколькими кратными связями) могут быть превращены в алканы путём каталитического гидрирования. В качестве катализатора используются мелкодисперсные платина, палладий или никель. Такие катализаторы активируют как водород, так и алкен.

5.3.2. Гидрирование галогеналканов

При каталитическом гидрировании галогеналканов в присутствии палладия образуются алканы.

Для восстановления галогеналканов можно использовать также цинк в соляной кислоте и натрий в спирте. Иодалканы могут быть восстановлены нагреванием в запаянной ампуле с иодоводородом.

5.3.3. Реакция Вюрца

При взаимодействии первичных галогеналканов с металлическим натрием образуются алканы с удвоенным числом атомов углерода. Эта реакция пригодна, прежде всего, для получения высших алканов симметричного строения.

В случае использования в качестве исходных соединений различных галогеналканов в результате реакции получается смесь трех углеводородов:

Эту смесь приходится разделять, что не всегда возможно.

Вместо натрия в этой реакции могут быть использованы и другие металлы, например магний, цинк, литий.

Реакционная способность галогеналканов уменьшается в ряду: R–I > R–Br > R–Cl.

5.3.4. Декарбоксилирование карбоновых кислот

При нагревании солей карбоновых кислот и щелочных или щелочноземельных металлов с гидроксидами натрия или бария происходит отщепление СО2 и образуется алкан.

Однозначно эта реакция протекает только для ацетата натрия, в случае других солей образуются побочные продукты.

5.3.5. Синтез Кольбе

При электролизе натриевых и калиевых солей карбоновых кислот образуются углеводороды симметричного строения.

На первой стадии происходит анодное окисление анионов кислот до радикалов RСОО, которые отщепляют СО2, а затем димеризуются. На катоде образуется водород и гидроксид щелочного металла.

5.3.6. Метод Фишера-Тропша

Каталитическое гидрирование окиси углерода протекает в присутствии катализатора, содержащего кобальт или железо, с образованием смеси алканов с небольшой молекулярной массой.

6. СТЕРЕОИЗОМЕРИЯ. ЭНАНТИОМЕРИЯ

6.1. Энантиомеры. Хиральность. Условия хиральности

Наряду со структурными изомерами в ряду алканов существуют пространственные изомеры. Это можно представить на примере 3-метилгексана.

Атом углерода, обозначенный С*, соединён с четырьмя разными группами. В этом углеводороде при одном и том же порядке связывания атомов алкильные группы могут быть по-разному расположены в пространстве около атома углерода С*. Существует несколько способов изображения пространственных изомеров на плоскости (рис. 6.1, 6.2).

Рис. 6.1. Объемное изображение с помощью «клиньев»

Рис. 6.2. Проекционные формулы Фишера

На рисунке 6.2 в центре находится атом углерода С*, горизонтальной линией обозначена связь между углеродом С* и группами, выступающими перед плоскостью рисунка, а вертикальной - между атомом С* и группами, расположенными за плоскостью рисунка. Проекции Фишера можно поворачивать только в плоскости рисунка и только на 180о, но не на 90о или 270о. Этими формулами изображены два различных соединения. Они отличаются друг от друга так же, как предмет и его зеркальное изображение или как левая и правая рука. Левая и правая руки - два очень похожих друг на друга предмета, но совместить их невозможно (не надеть левую перчатку на правую руку), значит - это два разных объекта.

Два соединения: предмет и его зеркальное изображение (I и II), несовместимые друг с другом, называются энантиомерами (от греческого “энантио” – противоположный).

Свойство соединения существовать в виде энантиомеров называется хиральностью (от греческого “хирос” - рука), а само соединение - хиральным.

Молекула 3-метилгексана не имеет плоскости симметрии и поэтому может существовать в виде энантиомеров (см. рис. 6.1).

Молекула обладает хиральностью, если она не имеет плоскости симметрии. Существует ряд элементов структуры, которые могут сделать молекулу не идентичной своему зеркальному изображению. Наиболее важным из них является хиральный атом углерода.

Хиральный атом или хиральный центр - это атом углерода, связанный с четырьмя различными группами и обозначаемый С*.

Молекула, в которой при атоме углерода находятся две или более одинаковых групп, имеет плоскость симметрии и, следовательно, не обладает хиральностью, поскольку молекула и ее зеркальное изображение идентичны. Такие молекулы называются ахиральными.

Например, изопентан не может существовать в виде энантиомеров и не обладает хиральностью.

Энантиомеры проявляют одинаковые физические свойства, кроме одного. Например, молекула 2-бромбутана существует в виде двух энантиомеров. Они имеют одинаковые температуры кипения, плавления, плотность, растворимость, показатели преломления. Отличить один энантиомер от другого можно по знаку вращения плоскополяризованного света. Энантиомеры вращают плоскость поляризованного света на один и тот же угол, но в разные стороны: один – по часовой стрелке, другой – на такой же угол, но против часовой стрелки.

Энантиомеры обладают одинаковыми химическими свойствами, скорость их взаимодействия с реагентами, не обладающими хиральностью, одинакова. В случае реакции с оптически активным реагентом скорости реакций энантиомеров различны. Иногда они отличаются настолько, что реакция данного реагента с одним из энантиомеров не протекает совсем.