
- •1. Алканы
- •Введение
- •1. Классификация органических соединений
- •2. Классификация органических реакций
- •3. Способы образования ковалентной связи
- •4. Гибридизация атомных орбиталей и форма органических молекул
- •4.1. Sp3-Гибридизация
- •4.2. Sр2-Гибридизация
- •4.3. Sp-Гибридизация
- •5. Алканы
- •Гомологический ряд алканов. Число структурных изомеров
- •5.1. Физические свойства
- •5.2. Химические свойства
- •5.2.1. Галогенирование
- •Зависимость реакционной способности галогенов от энергии связи h–Hal
- •5.2.2. Нитрование
- •5.3.4. Декарбоксилирование карбоновых кислот
- •6.2. Плоскополяризованный свет. Оптическая активность
- •6.3. Строение молекул и оптическая активность
- •6.4. Обозначение конфигураций
- •7. Циклоалканы
- •7.1 Номенклатура. Изомерия
- •7.2. Физические свойства
- •7.3. Типы напряжения
- •7.4. Строение
- •Теплоты сгорания и энергии напряжения циклоалканов
- •7.4.1. Особенности пространственного строения некоторых циклоалканов
- •7.5. Химические свойства
- •7.6. Способы получения
- •8.1. Физические свойства
- •Физические свойства алкенов
- •8.2. Химические свойства
- •8.2.1. Присоединение галогенов
- •8.2.1.1. Механизм реакции
- •8.2.1.2. Реакционная способность галогенов в реакции АdЕ
- •8.2.2. Присоединение галогеноводородов
- •8.2.2.1. Механизм реакции
- •8.2.2.2. Направление электрофильного присоединения
- •8.2.2.3. Реакционная способность и селективность
- •8.2.2.4. Перегруппировка
- •Механизм реакции
- •8.2.3. Присоединение бромистого водорода в присутствии
- •1. Инициирование:
- •2. Рост цепи:
- •3. Обрыв цепи:
- •8.2.4. Присоединение серной кислоты
- •8.2.5. Гидратация алкенов. Присоединение спиртов
- •8.2.6. Гидроборирование алкенов
- •8.2.7. Алкилирование алкенов
- •8.2.8. Гидрирование. Теплота гидрирования
- •8.2.9. Теплота гидрирования и устойчивость алкенов
- •8.2.10. Окисление
- •8.2.11. Полимеризация алкенов
- •8.2.12. Реакция аллильного замещения. Галогенирование
- •8.3. Способы получения алкенов
- •9.1. Устойчивость сопряженных диенов
- •9.2. Химические свойства
- •9.2.1. Электрофильное присоединение
- •9.2.2. 1,2- И 1,4-Присоединение. Кинетический контроль, термодинамический контроль
- •9.2.3. Диеновый синтез. Реакция Дильса-Альдера
- •9.2.4. Полимеризация
- •9.3. Способы получения
- •10. Алкины
- •Характеристики химических связей в молекуле алкинов
- •10.1. Физические свойства
- •10.2. Химические свойства
- •10.2.1. Реакции присоединеня
- •10.2.1.1. Каталитическое гидрирование и восстановление
- •10.2.1.2. Реакции электрофильного присоединения Галогенирование
- •Гидрогалогенирование
- •Гидратация
- •10.2.1.3. Нуклеофильное присоединение
- •10.2.2. Кислотность алкинов
- •Константы кислотности некоторых соединений
- •10.2.3. Взаимодействие алкинов с карбонильными соединениями
- •10.2.4. Окисление алкинов
- •10.2.5. Радикальное присоединение бромоводорода
- •10.3. Способы получения
- •11. Арены
- •11.1. Сравнение свойств бензола со свойствами алкенов
- •11.2. Теплота гидрирования. Энергия резонанса
- •11.3. Строение бензола
- •11.4. Ароматичность
- •11.5. Физические свойства
- •Физические свойства аренов
- •11.6. Химические свойства
- •11.6.1. Электрофильное замещение
- •11.6.2. Свободнорадикальное замещение в боковой цепи аренов
- •11.6.3. Реакции окисления
- •11.7. Методы синтеза аренов
- •12.1. Влияние заместителей на реакционную способность бензольного кольца
- •12.2. Влияние заместителя на выбор места электрофильной атаки
- •13. Многоядерные ароматические соединения
- •13.1. Нафталин
- •13.2. Антрацен и фенантрен
- •14. Гетероциклические соединения
- •14.1. Пятичленные гетероциклы
- •14.1.1. Строение
- •14.1.2. Химические свойства
- •14.1.3. Способы получения
- •14.2. Пиридин
- •14.2.1. Строение пиридина
- •14.2.2. Химические свойства
- •14.3. Хинолин
- •15. Галогеналканы
- •15.1. Нуклеофильное замещение
- •15.1.1. Бимолекулярное нуклеофильное замещение
- •15.1.2. Мономолекулярное нуклеофильное замещение
- •15.1.3. Сравнение реакций sn 1 и sn 2
- •15.2. Реакции отщепления (элиминирование)
- •15.2.1. Бимолекулярное отщепление е2
- •15.2.2. Мономолекулярное отщепление е1
- •15.2.3. Сравнение реакций нуклеофильного замещения и элиминирования
- •15.3. Методы синтеза галогеналканов
- •16.2. Нуклеофильное замещение, протекающее через стадию образования дегидробензола, - отщепление - присоединение
- •16.3. Бимолекулярное нуклеофильное замещение sn2Ar
- •16.4. Ориентация при нуклеофильном замещении в ароматическом кольце
- •17. Магнийорганические соединения
- •17.1. Получение и строение магнийорганических соединений
- •17.2. Синтез спиртов и кислот
- •Библиографический список
- •Оглавление
- •Часть 1
Физические свойства аренов
Название |
Формула |
Тпл, оС
|
Ткип, оС |
Плотность |
Показатель преломления |
Бензол |
|
5,5 |
80,0 |
0,879 |
1,5065 |
Толуол |
|
-95,0 |
111,0 |
0,866 |
1,4961 |
орто-Ксилол
|
|
-25,0 |
144,0 |
0,880 |
1,5055 |
мета-Ксилол |
|
-48,0 |
139,0 |
0,864 |
1,4972 |
пара-Ксилол |
|
13,0 |
138,0 |
0,861 |
1,4958 |
Этилбензол |
|
-95,0 |
136,0 |
0,867 |
1,4959 |
Стирол |
|
-31,0 |
145,0 |
0,907 |
1,5462 |
н-Пропилбензол |
|
-99,0 |
159,0 |
0,862 |
1,4920 |
Изопропилбензол (кумол) |
|
-96,0 |
152,0 |
0,862 |
1,4915 |
11.6. Химические свойства
Для бензола характерны реакции замещения, в которых сохраняется устойчивая шести--электронная ароматическая система. Хотя -электроны ароматического кольца в большей степени, чем -электроны в алкенах, участвуют в связывании ядер углерода, они удерживаются все же слабее, чем - электроны, и доступны для реагентов, любящих электроны - электрофилов. Следовательно, типичными реакциями аренов должны быть реакции электрофильного замещения (SE Ar).
11.6.1. Электрофильное замещение
Для аренов характерны следующие реакции электрофильного замещения
Нитрование
Азотная кислота очень медленно реагирует с бензолом. Для ускорения реакции нитрования бензола к азотной кислоте добавляют серную кислоту. Смесь концентрированных серной и азотной кислот называют нитрующей смесью.
Образование электрофильной частицы - нитроний-катиона NO2 происходит в реакции между азотной и серной кислотами. Вначале образуется протонированная азотная кислота.
Эта реакция представляет собой кислотно-основное равновесие. Серная кислота является кислотой, а более слабая азотная кислота ведёт себя как основание, предоставляя пару электронов для образования связи с протоном. Протонированная азотная кислота распадается с образованием нитроний-катиона O2N и молекулы воды.
Первая стадия – медленная, положительно заряженный нитроний-катион – электрофильный реагент или электрофил - атакует доступное - электронное облако бензола, вытягивая из него пару электронов. За счет этой пары электронов и происходит присоединение атома азота к атому углерода с образованием - связи углерод-азот. Атакуемый атом углерода переходит из sp2- гибридного состояния в sp3- гибридное состояние. При этом возникает карбокатион, называемый также -комплексом. Название “-комплекс” указывает на образование -связи углерода кольца с азотом электрофильного реагента.
Каково строение -комплекса? Оно не может быть показано структурой (I) с локализованными двойными связями и локализованным положительным зарядом. Строение -комплекса должно быть изображено резонансным гибридом трёх граничных структур - (I), (II) и (III), которые отличаются только распределением электронов:
Четыре - электрона распределены между пятью атомами углерода, находящимися в sp2- гибридном состоянии, положительный заряд не локализован на одном атоме углерода, а распределен между двумя орто- и одним пара-углеродными атомами относительно sp3- гибридизованного атома углерода. Распределение электронной плотности, а следовательно, и положительного заряда между несколькими атомами углерода ядра, делает карбокатион достаточно устойчивым. Энергия сопряжения этой системы незначительно отличается от энергии сопряжения бензола и составляет 109 кДж/моль. Именно благодаря такой стабилизации возможно образование карбокатиона из очень устойчивой молекулы бензола.
В дальнейшем строение - комплекса будет изображаться структурой, в которой дуга обозначает четыре -электрона, распределенные между пятью атомами углерода.
Вторая стадия – стабилизация карбокатиона. Первая стадия электрофильного замещения в ароматическом ядре подобна первой стадии электрофильного присоединения к алкенам. Но на второй быстрой стадии реакции происходит не присоединение нуклеофила, как в реакции электрофильного присоединения алкенов, а отщепление протона от sp3- гибридизованного атома углерода сопряженным анионом электрофила НOSO2O¯, два электрона вновь втягиваются в кольцо, атом углерода переходит из sp3-гибридного состояния в sp2-гибридное состояние с образованием более устойчивого шести -электронного секстета.
Это направление реакции имеет более низкую энергию активации (Е2< Е21), так как сопровождается образованием более устойчивого шести--электронного секстета.
Таким образом, электрофильное замещение представляет собой двухстадийный процесс, который представлен на диаграмме (рис. 11.2). Первая стадия (медленная) - присоединение электрофила к бензольному кольцу; вторая (быстрая) - отрыв протона сопряженным анионом электрофила.
Рис.11.2. Энергетическая диаграмма реакции нитрования бензола.
Реакции галогенирования, сульфирования, алкилирования и ацилирования протекают по такому же механизму, отличие состоит только в способах образования электрофильной частицы.
Галогенирование.
Хлор и бром реагируют с бензолом в присутствии кислот Льюиса (AlCl3, FeCl3, FeBr3). На практике в качестве катализатора при галогенировании применяют, как правило, железные стружки. Катализатор в таком случае образуется непосредственно в реакционной массе при взаимодействии железных стружек с галогеном.
Электрофильная частица образуется в реакции галогена с катализатором. Эта реакция представляет собой кислотно-основное взаимодействие, продуктом которого является донорно-акцепторный комплекс (ДАК).
Внешний атом хлора становится достаточно электрононенасыщенным, чтобы атаковать бензольное ядро.
Сульфирование
Сульфирование бензола можно осуществить дымящей серной кислотой (Н2SО4+ SO3).
В этой реакции электрофильным реагентом является трёхокись серы SO3 - нейтральная молекула, в которой три электроотрицательных атома кислорода, связанные с атомом серы, делают последний электрононенасыщенным.
Стадия образования электрофильного реагента:
Алкилирование
Алкилирование по Фриделю-Крафтсу состоит в реакции бензола с алкилгалогенидами в присутствии кислот Льюиса (AlBr3, AlCl3, FeCl3, SbCl5, BF3, ZnCl2 и др.).
В реакции алкилирования по Фриделю-Крафтсу нельзя использовать в качестве алкилирующих агентов арилгалогениды Ar-Hal и винилгалогениды R-CH=CH-Hal.
Электрофильная частица образуется при взаимодействии алкилгалогенида (основание Льюиса) с катализатором (кислотой Льюиса). Взаимодействие протекает через следующие стадии.
В более сложных первичных и вторичных галогеналканах первоначально образующийся карбокатион перегруппировывается в более устойчивый за счет миграции гидридиона или алкиланиона.
Если в качестве алкилирующих реагентов используются алкен или спирт, образование электрофилов протекает по схеме:
В более сложных алкенах и спиртах возможна перегруппировка так же, как и в случае галогеналканов.
Алкилирование по Фриделю-Крафтсу имеет ряд серьезных недостатков.
Во-первых, реакция алкилирования по Фриделю-Крафтсу связана с изомеризацией алкилирующего агента в ходе реакции, в результате чего образуется смесь изомерных продуктов алкилирования.
Основным продуктом алкилирования является изопропилбензол – результат взаимодействия бензола с вторичным карбокатионом (CH3)2CH. Возможно, перегруппировка осуществляется на стадии образования ДАК.
Для получения алкилбензолов с неразветвленной цепью атомов углерода используют двухстадийный синтез (п.11.7.4).
Во-вторых, образующийся при алкилировании бензола продукт является более реакционноспособным, чем бензол. Поэтому алкилирование аренов алкилгалогенидами при соотношении реагентов, близком к эквимолярному, приводит к образованию значительного количества продуктов полиалкилирования.
В этом отношении алкилирование сильно отличается от нитрования и галогенирования. Для того чтобы свести полиалкилирование к минимуму, используют большой избыток ароматического углеводорода. В этом случае он выполняет роль и реагента, и растворителя.
Еще одно ограничение для использования реакции алкилирования по Фриделю-Крафтсу связано с миграцией алкильной группы в конечном продукте (диспропорционирование продуктов). Например, алкилирование толуола хлористым изопропилом при 0 оС (AlCl3, растворитель – ацетонитрил CH3CN) приводит к смеси изомеров.
Однако при 25 оС в присутствии AlCl3 (2 моль) и HCl образуется только мета-изомер.
Из смеси трех изомерных цимолов в присутствии катализатора BF3 HCl уже через 10 минут образуется только мета-изомер.
Алкилирование по Фриделю-Крафтсу относится к немногочисленной группе обратимых реакций электрофильного ароматического замещения, подчиняющихся термодинамическому контролю: в продуктах реакции, протекающей при более высокой температуре, преобладает наиболее термодинамически устойчивый 1,3-диалкил- или 1,3,5-триалкилбензол.
Изомеризация первоначально образующихся продуктов алкилирования происходит на стадии образования -комплекса за счет 1,2-сдвига отрицательно заряженной алкильной группы (карбоаниона).
В результате перемещения группы CH3Θ в карбокатионах между тремя изомерами ксилола устанавливается равновесие, в котором всегда преобладает наиболее стабильный мета-изомер. В зависимости от температуры массовая доля м-ксилола в смеси равна 52-60 %, п-ксилола – 23-24 % и о-ксилола – 16-25 %. В более жестких условиях изомеризация алкилбензолов приобретает межмолекулярный характер. В результате из ксилолов образуется смесь, содержащая три-, тетра- и пентаметилбензолы наряду с толуолом и бензолом, происходит диспропорционирование.
Таким образом, при алкилировании правила ориентации соблюдаются только до тех пор, пока процесс протекает в мягких условиях, благоприятствующих кинетическому контролю (низкая температура, малые количества катализатора). Напротив, в условиях термодинамического контроля (более высокая температура, продолжительное время реакции, большие количества катализатора) алкилирование приводит преимущественно к мета-замещенным продуктам.
Для алкилирования ароматических углеводородов широко используется формальдегид. В присутствии минеральных кислот реакция бензола с формальдегидом приводит к дифенилметану с высоким выходом.
Ацилирование
Ацилирование - введение ацила R-C=O, или ароила Ar-C=O - происходит также в присутствии катализатора Фриделя-Крафтса При ацилировании ароматического кольца в качестве ацилирующего агента обычно используют хлорангидриды и ангидриды карбоновых кислот.
Активная частица – электрофил - образуется в реакции между хлорангидридом и хлоридом алюминия.
В случае использования в качестве ацилирующего агента ангидрида карбоновых кислот электрофил образуется в реакции между ангидридом и хлоридом алюминия.
В реакцию ацилирования необходимо вводить эквимолекулярное количество катализатора, так как хлорид алюминия выводится из реакционной среды, давая устойчивое соединение с образующимся продуктом.
Ацилирование по Фриделю-Крафтсу лишено тех недостатков, которые присущи реакции алкилирования. При ацилировании вводится только одна ацильная группа, поскольку ароматические кетоны не вступают в дальнейшую реакцию ацилирования (так же, как и другие арены, содержащие сильные электроноакцепторные группы). Еще одним преимуществом этой реакции является отсутствие перегруппировок в ацилирующем агенте. Кроме того, для ацилирования не характерны реакции диспропорционирования продуктов.
В реакции алкилирования и ацилирования не вступают соединения, содержащие только электроноакцепторные группы (-NO2, -COOH, -CN). Ароматические кольца с группами (-NH2, -NHR, -NR2) не вступают в реакцию Фриделя-Крафтса из-за связывания кислоты Льюиса с основаниями.
Хлорметилирование
Хлорметильную группу можно ввести непосредственно в кольцо по способу, сходному с реакцией Фриделя - Крафтса, - взаимодействием бензола с формальдегидом и хлороводородом в присутствии хлористого алюминия или хлористого цинка.
При хлорметилировании наблюдаются те же особенности, что и в реакции алкилирования по Фриделю-Крафтсу: такое же влияние ориентантов; кроме того, образуется некоторое количество полизамещённых продуктов. В приведённом примере получается в небольшом количестве п-дизамещённый продукт.
Формилирование
При помощи реакции, аналогичной синтезу кетонов по Фриделю-Крафтсу, можно ввести в бензольное кольцо формильную группу –СНО (реакция Гаттермана-Коха). Реакцию проводят в присутствии хлористого алюминия и однохлористой меди.
Возможно, что промежуточным неустойчивым продуктом этой реакции является формилхлорид, но как таковой он выделен не был.
Ориентация и границы применения реакции Гаттермана-Коха приблизительно те же, что и при синтезе кетонов по Фриделю-Крафтсу, но выходы ниже. В обычных условиях этого метода бензол в реакцию не вступает и может быть использован в качестве растворитедя при формилировании других углеводородов.