Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции Шмигеля / Лекции по ЭМ.doc
Скачиваний:
198
Добавлен:
15.05.2015
Размер:
3.99 Mб
Скачать

§2. Физическая сущность коммутации и ее влияние на работу машины.

При вращении якоря машины постоянного тока коллекторные пластины поочередно вступают в соприкосновение со щетками. При этом переход щетки с одной пластины на другую сопровождается переключением секции обмотки из одной параллельной ветви в другую и изменением тока в этой секции.

Процесс изменения тока в секциях при переключении их из одной параллельной ветви в другую называется коммутацией. Секция, в которой происходит коммутация, называется коммутирующей секцией, а время, в течение которого происходит процесс коммутации, называется периодом коммутации Тк. Величина периода коммутации определяется отрезком времени, начиная с момента, когда коллекторная пластина вступает в соприкосновение со щеткой, и кончая моментом, когда пластина полностью выходит из соприкосновения с этой щеткой.

,

где k– число коллекторных пластин;

n– скорость вращения якоря;

вщ– ширина щетки;

вк– расстояние между серединами соседних коллекторных пластин (коллекторное деление).

Рассмотрим процесс коммутации при условии:

  1. щетки расположены на геометрической нейтрали;

  2. в коммутирующей секции в течение всего периода коммутации не индуктируются электродвижущие силы;

  3. ширину щетки примем равной коллекторному делению (вщ= вк).

В начальный момент коммутации (рис.1а) контактная поверхность щетки касается только пластины 1, а секция 1 (коммутирующая секция) относится к левой параллельной ветви обмотки и ток в ней i=.

Затем пластина 1 постепенно сбегает со щетки и на смену ей набегает пластина 2. В результате коммутирующая секция оказывается замкнутой щеткой, и ток в ней постепенно уменьшается. Объясняется это тем, что токи i1иi2в пластинах 1 и 2 обратно пропорциональны переходным сопротивлениямrщ1(между щеткой и сбегающей пластиной 1) иrщ2(между щеткой и набегающей пластиной 2).

Что же касается тока в коммутирующей секции I, то он равен разности токовi1иi2.

По мере того, как пластина 1 теряет контакт со щеткой, возрастает величина rщ1и поэтому уменьшается токi1. Одновременно щетка переходит на пластину 2, при этом сопротивлениеrщ2уменьшается и токi2увеличивается. Когда же контактная поверхность щетки равномерно перекрывает обе коллекторные пластиныrщ1=rщ1(рис.1б), ток в коммутирующей секции становится равным нулю, т.к.i1=i2илиi1-i2=0. В конце процесса коммутации щетка полностью переходит на пластину 2 (рис.1в), а ток в коммутирующей секцииiвновь достигает величины. Однако, по направлению этот ток противоположен току в начале коммутации, а сама коммутирующая секция теперь оказалась в правой параллельной ветви обмотки якоря.

Таким образом, за период коммутации ток в коммутирующей секции изменяется от –iдо –i, а график изменения тока представляет собой прямую линию. Такую коммутацию называют прямолинейной, или идеальной.

Прямолинейная коммутация является наиболее желательным видом коммутации, т.к. она не вызывает в машине никаких вредных последствий. Плотность тока под щеткой в течение всего периода коммутации остается неизменной. Объясняется это тем, что при прямолинейной коммутации величина тока в контакте щетка - коллекторная пластина изменяется пропорционально изменению площади этого контакта.

Однако в реальных условиях работы машин постоянного тока процесс коммутации протекает значительно сложнее. Дело в том, что период коммутации обычно весьма мал и приблизительно составляет 10-4. . . 10-5с. При таком быстром изменении тока в коммутирующей секции возникает значительная э.д.с. самоиндукции

,

где Ls– индуктивность секции;

i– ток в коммутирующей секции.

Обычно в пазу якоря (каждом пазу) находятся несколько активных сторон (не менее двух), принадлежащих разным секциям. При этом все эти секции одновременно находятся в состоянии коммутации будучи замкнутыми разными щетками (см.рисунок).

При этом следует учесть, что обычно ширина щетки больше коллекторного деления (вщ> вк) и каждая щетка замыкает одновременно несколько секций.

Так как активные стороны коммутирующих секций лежат в одних пазах, то изменяющийся магнитный поток каждой из этих сторон наводит в других э.д.с. взаимоиндукции.

,

где - взаимная индуктивность одновременно коммутирующих секций.

Отсюда обе э.д.с. создают в коммутирующей секции результирующую э.д.с.

ep=eL+eM,

которая препятствует изменению тока в коммутирующей секции и поэтому называется реактивной. Кроме того, под влиянием реакции якоря магнитная индукция в зоне коммутации (на геометрической нейтрали) приобретает некоторое значение Вк, под действием которой в коммутирующей секции наводится э.д.с. внешнего поля.

,

где l– длина активных сторон секции;

V– линейная скорость движения секции;

ωS– число витков в секции.

Таким образом, в коммутирующей секции наводятся э.д.с.

∑е=ерк

Если машина не имеет добавочных полюсов, то э.д.с. ери екнаправлены согласованно и создают в коммутирующей секции добавочный ток коммутацииiктакого же направления, что и рабочий ток этой секцииIв начальный период коммутации. Такое взаимодействие токовiкиi приводит к тому, что изменение тока в коммутирующей секции задерживается.

Замедляющее действие тока коммутации объясняется тем, что этот ток создается, главным образом, реактивной э.д.с., которая, как известно, своим действием препятствует изменению тока в электрической цепи. Поэтому в момент равномерного перекрытия щеткой пластин 1 и 2 ток в коммутирующей секции не достигает нулевого значения, как это происходит при идеальной коммутации. Ток в коммутирующей секции достигает нулевого значения во втором полупериоде коммутации, т.е. коммутация становится криволинейно замедленной.

Добавочный ток коммутации iк, замыкаясь в коммутирующей секции, проходит через щеточный контакт.

Рис. Распределение плотности тока в контакте щетки при замедленной коммутации.

Это приводит к тому, что плотность тока под набегающим краем щетки уменьшается, а под сбегающим – увеличивается, достигая к концу периода коммутации значительной величины. При значительных нагрузках машины плотность тока под сбегающим краем щетки может достигнуть недопустимо больших значений, вызвать перегрев щетки и явится причиной искрения.