
- •Доказательство:
- •Лемма №3:Произведение ограниченной переменной на бесконечно малую есть величина басконечно малая Пусть
- •Доказательство:
- •Часть 1. Пусть ограниченны сверху, т.Е.Такое, что. Тогда, согласно теореме о существовании супремума мы можем утверждать, что.
- •Часть 2. Пусть теперь неограниченна сверху. Это значит, что.
- •Логарифмическая функция Тригонометри́ческие фу́нкции
- •5 Предел функции в точке. Основные свойства
- •Предел монотонной функции
- •10 Определения неприрывности функции в точке
- •Первая теорема Больцано – Коши
- •Вторая теорема Больцано – Коши
- •Первая теорема Вейерштрасса
- •Вторая теорема Вейерштрасса
- •17 Дифференциал функции. Определение. Геометрический смысл
- •22 Формула тейлора
- •23 Разложение элементарных функций с помощью формулы маклорена
- •24 Критерий постоянства функции на интервале
- •1 Критерий монотонности функции
- •2 Экстремум функции. Необходимое и достаточное условие Определение экстремума
- •Точки экстремума
- •3 Критерий выпуклости графика функции на интервале
- •4 Теорема о наименьшем и наибольшем значении неприрывной функции на интервале
- •2 Неопределённий интеграл. Определение. Свойства.
3 Критерий выпуклости графика функции на интервале
Теорема.
Если
функция y=f(x) имеет
конечную вторую производную на
интервале Х и
если выполняется неравенство (
),
то график функции имеет выпуклость
направленную вниз (вверх) на Х.
Эта
теорема позволяет находитьть промежутки
вогнутости и выпуклости функции, нужно
лишь на области определения исходной
функции решить неравенства и
соответственно.
Следует отметить, что точки, в которых функция y=f(x) определена, а вторая производная не существует, будем включать в интервалы вогнутости и выпуклости.
4 Теорема о наименьшем и наибольшем значении неприрывной функции на интервале
Функцию y = f(x) называют непрерывной на отрезке [a, b], если она непрерывна во всех внутренних точках этого отрезка, а на его концах, т.е. в точках a и b, непрерывна соответственно справа и слева.
Теорема 1. Функция, непрерывная на отрезке [a, b], хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее.
Теорема утверждает, что если функция y = f(x) непрерывна на отрезке [a, b], то найдётся хотя бы одна точка x1 [a, b] такая, что значение функции f(x)в этой точке будет самым большим из всех ее значений на этом отрезке: f(x1) ≥ f(x). Аналогично найдётся такая точка x2, в которой значение функции будет самым маленьким из всех значений на отрезке: f(x1) ≤ f(x).
Ясно, что таких точек может быть и несколько, например, на рисунке показано, что функция f(x) принимает наименьшее значение в двух точках x2 и x2'.
Замечание. Утверждение теоремы можно стать неверным, если рассмотреть значение функции на интервале (a, b). Действительно, если рассмотреть функцию y = x на (0, 2), то она непрерывна на этом интервале, но не достигает в нём ни наибольшего, ни наименьшего значений: она достигает этих значений на концах интервала, но концы не принадлежат нашей области.
Также теорема перестаёт быть верной для разрывных функций. Приведите пример.
Следствие. Если функция f(x) непрерывна на [a, b], то она ограничена на этом отрезке.
1 Определение первообразной функции. Теорема о представлении первообразной функции
Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.
еорема: любая первообразная для некоторой функции f на промежутке А может быть записана в виде:
F(x) +C, где F(x) – одна из первообразных для данной функции f на промежутке A, а С – некоторая произвольная постоянная.
Теорема, приведенная выше, называется еще основным свойством первообразной. Разберем её более подробно, так как в ней скрывается целых два свойства первообразной функции.
1. При подстановке любого числа вместо С в эту формулу получим первообразную функции f на промежутке А.
2. Если взять любую первообразную Ф для функции f на некотором промежутке А. То для этой производной можно подобрать некоторое число С, такое что для любого х будет выполняться следующее равенство: Ф(х) = F(x)+C.
2 Неопределённий интеграл. Определение. Свойства.
Неопределённый
интегра́л для
функции —
это совокупность всех первообразных данной
функции.
Функция F(x) называется первообразной функции f(x), если
Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функцииf(x) и обозначается как
Свойство
1. Производная
от неопределённого интеграла равна
подынтегральной функции, то есть если
, то
Свойство 2. Дифференциал от неопределённого интеграла равен подынтегральному выражению
Свойство 3. Неопределённый интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной константы
Свойство 4. Неопределённый интеграл от суммы функций равен сумме неопределённых интегралов
Свойство 5. Неопределённый интеграл от разности функций равен соответствующей разности неопределённых интегралов
Свойство 6. Постоянный множитель можно выносить за знак интеграла
Свойство 7. Если
то