Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан сука.docx
Скачиваний:
106
Добавлен:
15.05.2015
Размер:
373.09 Кб
Скачать

10 Определения неприрывности функции в точке

 Определение 3.1   Пусть функция определена на некотором интервале, для которого-- внутренняя точка. Функцияназываетсянепрерывной в точке , если существует пределприи этот предел равен значению, то есть

Пусть функция определена на некотором полуинтервале, для которого-- левый конец. Функцияназываетсянепрерывной справа в точке , если существует пределприи этот предел равен значению, то есть

Пусть, наконец, функция определена на некотором полуинтервале, для которого-- правый конец. Функцияназываетсянепрерывной слева в точке , если существует пределприи этот предел равен значению, то есть

    

Из теоремы о связи двустороннего предела с односторонними (теорема 2.1) сразу следует, как уже отмечалось в главе 2, что имеет место следующее предложение.

        Предложение 3.1   Функция тогда и только тогда непрерывна в точке, когда она непрерывна в точкесправа и слева, то есть когда выполнены следующие условия:

1) функция определена в точкеи в некоторой окрестности этой точки;

2) существует предел значений функции слева: ;

3) существует предел значений функции справа: ;

4) эти два предела совпадают между собой и со значением функции в точке :.

11 понятие одностороннего предела функции в точке

Число A' называется пределом слева функции f(x) в точке a:

если

|A' - f(x)| < ε при 0 < a - x < δ (ε).

Аналогично, число A" называется пределом справа функции f(x) в точке a:

если

|A" - f(x) |< ε при 0 < x - a < δ (ε).

Для  существования предела функции в точке необходимо и достаточно, чтобы

f (a - 0) = f(a + 0).

12 Классификация точек разрыва функции

О п р е д е л е н и е 1. Точкой разрыва первого рода функции y = f (x) называется такая точка x0, в которой функция имеет левый и правый пределы, неравные между собой 

О п р е д е л е н и е 2. Точка x0 (рис. 70) называется точкой разрыва второго рода функции y = f (x), если хотя бы один из односторонних пределов не существует или равен бесконечности:

 и .          

О п р е д е л е н и е 3. Точка x0 (рис. 71) называется точкой устранимого разрыва y = f (x), если функция в точке неопределена, но односторонние пределы существуют и равны между собой:

, но 

13 Свойства функций неприрывных на отрезке

Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897) - немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке выполняется условие - .

Доказательство этого свойства основано на том, что функция, непрерывная в точке , ограничена в некоторой ее окрестности, а если разбивать отрезок на бесконечное количество отрезков, которые “стягиваются” к точке , то образуется некоторая окрестность точки .

Свойство 2: Функция, непрерывная на отрезке , принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения и , что , причем .

Свойство 3: (Вторая теорема Больцано - Коши). Функция, непрерывная на отрезке , принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция непрерывна в точке , то существует некоторая окрестность точки , в которой функция сохраняет знак.

Свойство 5: (Первая теорема Больцано (1781-1848) - Коши). Если функция - непрерывная на отрезке и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где .

Свойство 7: Если функция определена, монотонна и непрерывна на некотором промежутке, то и обратная ей функция тоже однозначна, монотонна и непрерывна.