
- •Государственное бюджетное образовательное учреждение
- •Глава 1. Углеводный обмен л.П. Никитина, а.Ц. Гомбоева
- •1.1. Виды углеводов и их функции
- •1.2. Переваривание сложных глицидов в желудочно-кишечном тракте
- •1.3. Судьба глюкозы в клетке
- •Этапы гликолиза
- •Роль пентозофосфатного пути окисления глюкозы
- •Анаболическая фаза обмена глюкозы
- •1.4. Гликогенолиз и гликогеногенез
- •Гликогенолиз
- •1.5. Колебания величин глюкозы в крови, методы их изучения
- •1.6. Метаболизм гетерополисахаридов
- •1.7. Регуляция и патология углеводного обмена
- •Тесты к разделу углеводный обмен
- •Глава 2. Обмен липидов л.П. Никитина, а.Ц. Гомбоева
- •2.1. Строение и функции липидов
- •2.2. Переваривание липидов пищи
- •2.3. Классификация и роль липопротеинов
- •Состав липопротеинов крови, их функции
- •2.4. Катаболизм глицерола и вжк
- •2.4.1. Пути утилизации глицерола
- •2.4.2. Виды окисления жирных кислот
- •Β–Окисление жирных кислот
- •Энергетическая ценность β-окисления жирной кислоты
- •2.5. Анаболическая фаза обмена липидов
- •2.5.1. Синтез высших жирных кислот
- •2.5.2. Кетогенез и его использование клетками
- •2.5.3. Биосинтез триацилглицеролов
- •2.6. Судьба фосфолипидов в организме
- •2.7. Метаболизм стероидов
- •Баланс холестерола в тканях
- •2.8. Перекисное окисление липидов (пол) и защита от него
- •2.9. Регуляция метаболизма липидов
- •2.10. Патология липидного обмена
- •2.10.1. Ожирение и жировое перерождение печени
- •2.10.2. Болезни обмена холестерина
- •Тесты к главе «Метаболизм липидов»
Роль пентозофосфатного пути окисления глюкозы
Однако не всегда распад глюкозо-6-фосфата сопровождается выделением энергии. В другом варианте своего разрушения – пентозофосфатном пути (протекающем в печени, коре надпочечников, эмбриональной и жировой тканях) (рис. 4) происходит разрыв углерод-углеродных связей с высвобождением СО2, а атомы водорода при этом садятся на НАД+Ф - участник восстановительных реакций (в синтезе ВЖК, ХС, гормонов стероидной природы, катехоламинов, в преобразовании рибозы в дезоксирибозу, в работе антирадикальной системы, в микросомальных преобразованиях).
Рис. 4. Основные звенья пентозофосфатного пути окисления глюкозы.
Наиболее активно этот процесс протекает в цитозоле клеток печени, жировой ткани, эритроцитах, коре надпочечников, молочной железе при лактации, в гораздо меньшей степени в скелетных мышцах.
Пентозофосфатный путь включает два этапа – окислительный и неокислительный (структурных перестроек).
В первой окислительной фазе глюкозо-6-фосфат в трех последовательных реакциях превращается в рибулозо-5-фосфат путем восстановления двух молекул НАДФ+ до НАДФН.
Второй этап включает преобразование пентоз в гексозы. Рибулозо-5-фосфат изомеризуется до рибозо-5-фосфата и ксилулозо-5-фосфата. Далее под влиянием ферментов транскетолазы и трансальдолазы происходят структурные перестройки с образованием фосфопроизводных других моносахаридов, последующая модификация которых завершается получением фруктозо-6-фосфата и глицеральдегидфосфата.
Глицеральдегид-3-фосфат в зависимости от условий и вида клеток может либо включиться в гликолиз, либо через дигидроксиацетонфосфат восстанавливаться в глицерол-3-фосфат, который используется в синтезе фосфатидной кислоты – предшественника нейтральных жиров и глицерофосфатидов. Метаболит ПФП – рибозо-5-фосфат является жизненно важным соединением, служа облигатным компонентом моно-, ди-, полинуклеотидов (об их роли смотри выше).
Если клетка нуждается в больших количествах НАДФН (например, для синтеза в печени жирных кислот или холестерола), то в ПФП будут активно идти дегидрогеназные реакции. Образованные фруктозо-6-фосфат и глицеральдегид-3-фосфат помощью глюконеогенеза превратятся в 5 молекул глюкозо-6-фосфата, и цикл начнется вновь, включив дополнительно одну новую молекулу эфира моносахарида.
Анаболическая фаза обмена глюкозы
При определенных ситуациях – при низком содержании углеводов в пище, голодании, длительной физической работе, т.е. когда глюкоза крови расходуется и наступает гипогликемия, организм должен иметь возможность синтезировать моносахарид и нормализовать его концентрацию в крови. Это достигается реакциями глюконеогенеза (Приложение, рис
Глюконеогенез (ГНГ) – это сообразование глюкозы из неуглеводных компонентов. Чтобы молекула могла участвовать в подобных реакциях, ей необходимо включать не менее трех атомов углерода, причем её средний атом должен быть связан с какой-либо функциональной группой (–NH2, –ОН, =С=О). Подобным требованиям удовлетворяют глицерин, лактат, пируват, оксалоацетат, некоторые (гликогенные) аминокислоты (аланин, серин, аспартат, глутамат и т.д.). ГНГ выгодно отличается от гликогенолиза тем, что количество его субстратов велико и он может довольно длительное время поддерживать гомеостаз глюкозы крови. Этот процесс необходим еще для того, чтобы при гипоксии была возможность предотвратить накопление в мышцах лактата, опасного последующим развитием лактоацидоза. Чтобы этого не происходило, работает глюкозо-лактатный цикл (цикл Кори), объединяющий реакции глюконеогенеза и анаэробного гликолиза (рис. 5).
Рис. 5. Схема цикл Кори (глюкозо-лактатный цикл)
Глюконеогенез включает все обратимые реакции гликолиза и особые обходные пути, в тех участках, где это энергетически невозможно (Приложение, рис. 5).
В гликолизе три реакции необратимы: пируваткиназная, фосфофруктокиназная и гексокиназная, в них происходит высвобождение энергии для синтеза АТФ. Поэтому в обратном процессе возникают энергетические барьеры, которые клетка вынуждена обходить с помощью дополнительных механизмов.
Для преобразования ПВК в фосфоенолпируват используются два ключевых фермента: в митохондриях пируваткарбоксилаза и в цитозоле фосфоенолпируваткарбоксикиназа (рис. 6).
Рис. 6. Этапы образования ФЕПВК
С помощью первого получается оксалоацетат, который восстанавливается до малата и переходит через мембрану в цитозоль, где вновь окисляется и под действием фосфоенолпируваткарбоксикиназы преобразуется в фосфоенолпируват.
Второй обходной путь протекает с помощью фермента фруктозо-1,6-дифосфатазы (рис. 7).
Фруктозо-1,6-дифосфат Фруктозо-6-фосфат
Рис. 7. Образование фруктозо-6-фосфата
Конечная реакция катализируется глюкозо-6-фосфатазой (рис. 8). Она имеется только в печени и почках, следовательно, только эти ткани могут продуцировать свободную глюкозу и выделять её в кровь.
Рис. 8. Реакция гидролиза глюкозо-6-фосфата