Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Зачет МБ

.docx
Скачиваний:
209
Добавлен:
13.05.2015
Размер:
18.15 Кб
Скачать

Вопрос 1 (Предмет и задачи молекулярной биологии)

Предметом изучения молекулярной биологии являются в основном белки, нуклеиновые кислоты и молекулярные комплексы (молекулярные машины) на их основе и процессы, в которых они участвуют.

Вопрос 2 (Исторические аспекты развития молекулярной биологии)

Основные этапы развития молекулярной биологии

 

1.        Первый романтический период 1935-1944 гг.

Макс Дельбрюк и Сальвадор Лурия занимались изучением репродукции фагов и вирусов, представляющих собой комплексы нуклеиновых кислот с белками.

В 1940 г. Джордж Бидл и Эдуард Татум сформулировали гипотезу - "Один ген -один фермент". Однако, что такое ген в физико-химическом плане тогда еще не знали.

2.        Второй романтический период 1944-1953гг.

Была доказана генетическая роль ДНК. В 1953 г. появилась модель двойной спирали ДНК, за которую ее создатели Джеймс Уотсон, Френсис Крик и Морис Уилкинс были удостоены Нобелевской премии.

3. Догматический период 1953-1962 гг.

Сформулирована центральная догма молекулярной биологии:

Перенос генетической информации идет в направленииДНК → РНК → белок.

В 1962 г. был расшифрован генетический код.

4.          Академический период с 1962 г. по настоящее время, в котором с 1974 года выделяют генно-инженерный подпериод.

 

 Ocновныe открытия

 

1944 г. Доказательство генетической роли ДНК. Освальд Эйвери, Колин Мак-Леод, Маклин Мак-Карти.

1953 г. Установление структуры ДНК. Джеймс Уотсон, Френсис Крик.

1961 г. Открытие генетической регуляции синтеза ферментов. Андре Львов, Франсуа Жакоб, Жак Моно.

1962 г. Расшифровка генетического кода. Маршалл Нирнберг, Генрих Маттеи, Северо Очоа.

1967 г. Синтез invitro биологически активной ДНК. Артур Корнберг (неформальный лидер молекулярной биологии).

1970 г. Химический синтез гена. Гобинд Корана.

1970 г. Открытие фермента обратной транскриптазы и явления обратной транскрипции. Говард Темин, ДэвидБалтимор, Ренато Дульбеко.

1974 г. Открытие рестриктаз. Гамильтон Смит, Даниэль Натанс, Вернер Арбер.

1978 г. Открытие сплайсинга. Филипп Шарп.

1982 г. Открытие автосплайсинга. ТомасЧек.

Вопрос 3 (Практическое использование достижений молекулярной биологии)

Биомедицина (Новые антибиотики, вакцины, терапия рака, генотерапия, биосовместимые материалы)

Сельское хозяйство (ветиринария, новые корма, новые породы и сорта, трансгенные растения и животные)

Пищевые технологии (ферментные технологии (углубление переработки сырья, новые методы консервирования), продукты низкомолекулярных соединений, закваски и пробиотики)

Химические технологии и биотоплево (биоразлагаемый пластик, биоэтанол, биодизель)

Защита окружающей среды и биобезопасность (мониторинг микрофлоры, контроль за ГМО, биодеградация нефти)

Вопрос 4 (Использование достижений молекулярной биологии в медицине)

Вопрос 5 (Молекулярная биология – теоретическая база биотехнологии и генетической инженерии)

Биотехнология – это интеграция естественных инженерных наук, позволяющая наиболее полно реализовать возможности живых организмов для производства продуктов питания, лекарственных препаратов, для решения проблем в области энергетики и охраны окружающей среды.

Одним из видов биотехнологий является генная инженерия.

Генная инженерия – составная часть современной биотехнологии, теоретической основой ее является молекулярная биология,генетика. Суть новой технологии заключается о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма (in vitro) с последующим внедрением созданных конструкций в живой организм. В результате достигается их включение и активность в данном организме и у его потомства. Возможности генной инженерии - генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение генно-инженерно-модифицированных (генетически модифицированных, трансгенных) организмов с новыми уникальными генетическими, биохимическими и физиологическими свойствами и признаками, делают это направление стратегическим.

С точки зрения методологии генная инженерия сочетает в себе фундаментальные принципы (генетика, клеточная теория, молекулярная биология, системная биология), достижения самых современных постгеномных наук: геномики, метаболомики, протеомики с реальными достижениями в прикладных направлениях: биомедицина, агробиотехнология, биоэнергетика, биофармакология, биоиндустрия и т.д.

Генная инженерия относится (наряду с биотехнологией, генетикой, молекулярной биологией, и рядом других наук о Жизни) к сфере естественных наук.

Вопрос 6 (Методы молекулярной биологии)

Сегодня молекулярная биология располагает обширным арсеналом методов, позволяющих решать самые передовые и самые сложные задачи, стоящие перед учёными.

Одним из самых распространённых методов в молекулярной биологии является гель-электрофорез, который решает задачи разделения смеси макромолекул по размеру или по заряду. Почти всегда после разделения макромолекул в геле применяетсяблоттинг, метод, позволяющий переносить макромолекулы из геля (сорбировать) на поверхность мембраны для удобства дальнейшей работы с ними, в частности гибридизации. Гибридизация – формирование гибридной ДНК из двух цепей, имеющих различную природу, – метод, играющий важную роль в фундаментальных исследованиях. Он применяется для определениякомплементарных отрезков в разных ДНК (ДНК разных видов), с его помощью происходит поиск новых генов, с его помощью была открыта РНК интерференция, а его принцип лёг в основу геномной дактилоскопии.

Большую роль в современной практике молекулярно-биологических исследований играет метод секвенирования – определения последовательности нуклеотидов в нуклеиновых кислотах и аминокислот в белках.

Современную молекулярную биологию невозможно представить без метода полимеразной цепной реакции (ПЦР). Благодаря этому методу осуществляется увеличение количества (амплификация) копий некоторой последовательности ДНК, чтобы позволяет получить из одной молекулы достаточное количество вещества для дальнейшей работы с ним. Аналогичный результат достигается технологией молекулярного клонирования, в которой требующаяся нуклеотидная последовательность внедряется в ДНК бактерии (живых систем), после чего размножение бактерий приводит к необходимому результату. Этот подход технически значительно сложнее, однако позволяет одновременно получать результат экспрессии исследуемой нуклеотидной последовательности.

Также в молекулярно-биологических исследованиях широко применяются методы ультрацентрифугирование (для разделения макромолекул (больших количеств), клеток, органелл), методы электронной и флуоресцентной микроскопии, спектрофотометрические методы, рентгеноструктурный анализ, авторадиография, и т.п.

Благодаря техническому прогрессу и научным изысканиям в области химии, физики, биологии и информатики современное оборудование позволяет выделять, изучать и изменять отдельные гены и процессы, в которые они вовлечены.

Вопрос 7 (Нуклеиновые кислоты - носители генетической информации. Доказательства генетической роли ДНК)