
- •36. Бетон. Основные физико-механические свойства: прочность, усадка, ползучесть. Классы и марки бетона. Сущность железобетона. Классификация железобетона.
- •Модуль деформаций и мера ползучести бетона
- •37.Каменные кладки. Материалы каменных кладок, требования к ним. Основные физико-механические свойства.
- •38. Арматура для железобетона. Основные физико-механические свойства. Показатели качества стальной арматуры. Арматурные изделия
- •Испытание образцов на выдергивание или вдавливание:
- •1.1.10. Классификация арматуры по 4-м признакам
- •1.1.11. Механические свойства арматурных сталей Деформативность
- •Деформативность
- •39. Предварительно напряженный железобетон. Способы создания предварительного напряжения. Усилия от предварительного обжатия, потери напряжений в арматуре.
- •40. Деформативные характеристики бетона, двух и трехлинейные диаграммы состояния бетона, используемые при расчете железобетонных элементов по нелинейной деформационной модели.
- •Объемные деформации.
- •Деформации при длительном действии нагрузки.
- •1.2.2. Три стадии напряженно-деформированного состояния железобетонных элементов
- •41. Последовательность проектирования железобетонных и каменных конструкций. Метод расчета по предельным состояниям.
- •Метод расчета конструкций по предельным состояниям Сущность метода
- •Две группы предельных состояний
- •42. Сжатые элементы каменных кладок. Сведения о расчете.
- •43. Расчет изгибаемых железобетонных элементов с ненапрягаемой арматурой на прочность по сечениям, нормальным к продольной оси элемента. Алгоритм задач типа 1 и 2. Конструирование.
- •Принципы армирования.
- •1.3.4. Особенности предельного состояния наклонного сечения изгибаемых элементов
- •Расчет железобетонных элементов по наклонным сечениям на действие изгибающего момента.
- •Момент Mswпри поперечной арматуре в виде хомутов, нормальных к продольной оси элемента, определяют по формуле
- •46. Косвенное армирование
- •47. Расчет железобетонных элементов по образованию трещин
- •48.Внецентренно сжатые элементы
- •49.Компоновка несущих систем опз с применением сборных жбк,обеспечение их устойчивости и пространственной жесткости.
- •52. Основные положения метода предельного равновесия
- •53 Расчет и конструирование плит, опертых по контуру
- •54. Дать последовательность расчета по прочности центрально и внецентренно нагруженной неармированной и армированной гриз.Сетками кладки
41. Последовательность проектирования железобетонных и каменных конструкций. Метод расчета по предельным состояниям.
Метод расчета конструкций по предельным состояниям Сущность метода
Метод расчета конструкций по предельным состояниям является дальнейшим развитием метода расчета по разрушающим усилиям. При расчете по этому методу четко устанавливают предельные состояния конструкций и используют систему расчетных коэффициентов, введение которых гарантирует, что такое состояние не наступит при самых неблагоприятных сочетаниях нагрузок и при наименьших значениях прочностных характеристик материалов. Прочность сечений определяют по стадии разрушения, но безопасность работы конструкции под нагрузкой оценивают не одним синтезирующим коэффициентом запаса, а указанной системой расчетных коэффициентов. Конструкции, запроектированные и рассчитанные по методу предельного состояния, получаются несколько экономичнее.
Две группы предельных состояний
Предельными считаются состояния, при которых конструкции перестают удовлетворять предъявляемым к ним в процессе эксплуатации требованиям, т.е. теряют способность сопротивляться внешним нагрузкам и воздействиям или получают недопустимые перемещения или местные повреждения.
Железобетонные конструкции должны удовлетворять требованиям расчета по двум группам предельных состояний: по несущей способности (первая группа); по пригодности к нормальной эксплуатации (вторая группа).
Расчет по предельным состояниям первой группы выполняют, чтобы предотвратить следующие явления:
хрупкое, вязкое или иного характера разрушение (расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением);
потерю устойчивости формы конструкции (расчет на устойчивость тонкостенных конструкций и т.п.) или се положения (расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров и т. п.);
усталостное разрушение (расчет на выносливость конструкций, находящихся под воздействием многократно повторяющейся подвижной или пульсирующей нагрузки: подкрановых балок, шпал, рамных фундаментов и перекрытий под неуравновешенные машины и т.п.);
разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды (агрессивность среды, попеременное замораживание И оттаивание и т. п.).
Расчет но продольным состояниям второй группы выполняют, чтобы предотвратить следующие явления:
образование чрезмерного и продолжительного раскрытия трещин (если по условиям эксплуатации они допустимы);
чрезмерные перемещения (прогибы, углы поворота, углы перекоса и амплитуды колебаний).
Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов или частей выполняют для всех этапов: изготовления, транспортирования, монтажа и эксплуатации. При этом расчетные схемы должны отвечать принятым конструктивным решениям и каждому из перечисленных этапов.
42. Сжатые элементы каменных кладок. Сведения о расчете.
Центральное сжатие.
Прочность центрально-сжатого элемента проверяется из условия
(9)
где R —расчетное сопротивление кладки;
А—площадь поперечного сечения;
φ – коэффициент продольного изгиба, определяется по таблице в зависимости от гибкости элемента и упругой характеристики кладки α;
mg – коэффициент, учитывающий влияние прогиба при действующей нагрузке.
Местное сжатие кладки происходит в зонах опирания балок, прогонов, ферм, колонн, плит покрытий и перекрытий и т.д. Нагрузка в этом случае воспринимается не всем поперечным сечением, а частью этого сечения, поэтому несущая способность кладки при местном сжатии всегда выше, чем при осевом, когда в работе участвует все сечение. Несущую способность при местном сжатии рассчитывают по условию
(10)
здесь Ac — площадь смятия;
Rc — расчетное сопротивление кладки при местном сжатии;
Ш, в – соответственно коэффициент полноты эпюры давления от местного загружения и коэффициент, учитывающий вид кладки;
(11)
R — расчетное сопротивление кладки осевому сжатию,
о — коэффициент, учитывающий возможное увеличение Rc по сравнению с R и зависящий от схемы расположения площади смятия и вида кладки, о1=1ч2.
Внецентренно-сжатые элементы.
Наиболее распространенный вид работы конструкций из каменной кладки —внецентренно-сжатые. Несущая способность проверяется по условию
(12)
где Ac – площадь сжатой части сечения, Ac=A(1-2e0/h);
щ – коэффициент, учитывающий увеличение расчетного сопротивления кладки осевому сжатию, щ=1…1,45;
mg,e и ц1 - коэффициент, учитывающий влияние прогиба, и коэффициент продольного изгиба с учетом расчетного экцентриситета е0.