Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
62
Добавлен:
12.05.2015
Размер:
116.74 Кб
Скачать

Лекция №16 внутренняя энергия идеального газа

Рассмотрим внутреннюю энергию идеального газа. В идеальном газе притяжение между молекулами отсутствует. Поэтому их потенциальная энергия равна нулю. Тогда внутренняя энергия этого газа будет складываться только из кинетических энергий отдельных молекул. Вычислим сначала внутреннюю энергию одного моля газа. Известно, что число молекул, находящихся в одном моле вещества, равно числу Авогадро NА. Средняя кинетическая энергия молекулы находится по формуле. Следовательно, внутренняя энергияUодного моля идеального газа равна:

(1)

так как kNA = R универсальная газовая постоянная. Внутренняя энергия U произвольной массы газа M равна внутренней энергии одного моля, умноженной на число молей , равной  = M / , где — молярная масса газа, т.е.

(2)

Таким образом, внутренняя энергия данной массы идеального газа зависит только от температуры и не зависит от объёма и давления.

Количество теплоты

Внутренняя энергия термодинамической системы под воздействием ряда внешних факторов может меняться, о чём как видно из формулы (2), можно судить по изменению температуры этой системы. Например, если быстро сжать газ, то его температура повышается. При сверлении металла также наблюдается его нагревание. Если привести в контакт два тела, имеющих разные температуры, то температура более холодного тела повышается, а более нагретого — понижается. В первых двух случаях внутренняя энергия изменяется за счёт работы внешних сил, а в последнем — происходит обмен кинетическими энергиями молекул, в результате чего суммарная кинетическая энергия молекул нагретого тела уменьшается, а менее нагретого — возрастает. Происходит передача энергии от горячего тела к холодному без совершения механической работы. Процесс передачи энергии от одного тела к другому без совершения механической работы получил название теплопередачи или теплообмена. Передача энергии между телами, имеющими разные температуры, характеризуется величиной, называемой количеством теплоты или теплотой, т.е. количество теплоты — это энергия, переданная путём теплообмена от одной термодинамической системы к другой вследствие разницы температуры этих систем.

Первый закон термодинамики

В природе существует закон сохранения и превращения энергии, согласно которомуэнергия не исчезает и не возникает вновь, а лишь переходит из одного вида в другой. Этот закон применительно ктепловым процессам, т.е. процессам, связанным с изменением температуры термодинамической системы, а также с изменением агрегатного состояния вещества, получил название первого закона термодинамики.

Если термодинамической системе сообщить некоторое количество теплоты Q, т.е. некоторую энергию, то за счёт этой энергии в общем случае происходит изменение её внутренней энергииUи система, расширяясь, совершает определённую механическую работуA. Очевидно, что, согласно закону сохранения энергии, должно выполняться равенство:

(3)

т.е. количество теплоты, сообщённое термодинамической системе, расходуется на изменение её внутренней энергии и на совершение системой механической работы при её расширении. Соотношение (4) носит название первого закона термодинамики.

Выражение первого закона удобно записывать для малого изменения состояния системы при сообщении ей элементарного количества теплоты dQи совершения системой элементарной работыdA, т.е.

(4)

где dU — элементарное изменение внутренней энергии системы. Формула (4) представляет собой запись первого закона термодинамики в дифференциальной форме.

Соседние файлы в папке ЛЕКЦИИ ЭКОНОМ