Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции Каюмова Р.А. 9 сентября.doc
Скачиваний:
38
Добавлен:
11.05.2015
Размер:
9.76 Mб
Скачать

18.6. Угол закрутки тонкостенных стержней замкнутого профиля

Рассмотрим поворот сечения на угол - угол поворота правого торца относительно левого (рис.18.26). При этом точкаперейдет в точку.

Из рисунка видно, что:

. (18.20)

рис.18.26 рис.18.27

Как и в случае круглых стержней выразим теперь через угол- угол сдвига прямоугольникаHNLK. Как видно из рисунка

.

Здесь в силу малости. Тогда

. (18.21)

Выразим далее через. Используя равенство углов с перпендикулярными сторонами, получим, что. Тогда:

.

Подстановка сюда соотношений (18.20), (18.21)дает:

. (18.22)

По закону Гука

.

Из (18.22) с учетом формулы Бредта (18.19) получим:

. (18.23)

Отсюда вытекает, что якобы зависит от. Для осреднения угла поворота разных точек контура используют следующий подход. В (18.23) слева и справа у нас одинаковые функции. Значит и интегралы от них будут одинаковы:

.

Ранее было получено, что слева интеграл равен (см.формулу (18.18)). Тогда:.

Таким образом, получаем, следующую формулу Бредта для угла :

. (18.24)

Здесь интеграл называется относительным периметром стенки трубы:

. (18.25)

В компактной форме формулу Бредта для угла запишем теперь в виде:

(18.24)

Рассмотрим частные случаи.

  1. Пусть .

Тогда:,

где р - периметр контура сечения трубы.

  1. Пусть труба составлена из кусков с постоянными толщинами (см. рис.18.28) :

рис.18.28

Тогда: (18.26)

Таким образом:

(18.27)

18.7. Кручение стержней открытого профиля

Рассмотрим. кручение стержней с прямоугольным сечением.

рис.18.29

Точное решение получено Сен-Венаном. Но можно получить приближенное решение и инженерными методами, считая, что стержень – это совокупность круглых валов, как это показано на рис.18.30.

рис.18.30

Введем систему координат (см. рис. рис.18.29). Если считать, что напряжения не меняются по ширине рассматриваемого прямоугольника, а только по высоте, то получим:

. (18.28)

рис.18.31

Разбив площадь на микроплощадки и вычисляя силу , которая действует на нее, можно подсчитать момент, который создает сила. Например, от горизонтальных напряжений момент будет

. (18.29)

Приравнивая сумму всех моментов крутящему моменту можно найти выражение для :

. (18.30)

Здесь: .

Формулу для теперь можно записать в виде, аналогичном случаю круглых валов (см.формулу (18.5)):

, где (18.31)

Для угла закрутки стержня прямоугольного сечения формула имеет вид:

(18.32)

Здесь в отличие от круглых валов (см.формулу (18.10)) в знаменателе есть коэффициент 2.

Если стержень состоит из нескольких прямоугольников (см.рис.18.16), то выкладки (18.28) – (18.31) будут такими же. Изменится только момент инерции . Он будет состоять из суммы моментов каждого прямоугольника:

. (18.33)

Сравнивая (18.31) с (18.19) можно заметить, что в отличие от тонкостенных стержней замкнутого профиля в стержнях с открытым профилем максимальные напряжения возникают там, где , т.е. там, где стенка является наиболее толстой. Значит и разрушение начнется в самом толстом месте сечения.

Отметим, что стержни с замкнутым профилем намного прочнее и жестче, чем стержни с открытки профилем. Для примера можно рассмотреть трубу квадратного сечения ширины а, постоянной толщины t (см. рис.18.28). Тогда .

Вычислим напряжение и угол закрутки для трубы с замкнутым контуром:

, .

Если же разрезать трубу вдоль оси (например, вдоль ребра), то получим стержень с открытым контуром. Вычислим максимальное напряжение (которое будет при ) и угол закрутки. Учитывая, чтополучим:

. .

Найдем отношения напряжений и углов закрутки ,:

, .

Видно, что при малых t напряжение и уголбудут гораздо больше. Например, если положить а = 20 см., t = 1мм., то получим

, .

Можно сказать, что после разреза трубы прочность понизилась в 300 раз, а жесткость в 30000 раз.