Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
PHYSIC.doc
Скачиваний:
749
Добавлен:
11.05.2015
Размер:
3 Mб
Скачать

26Циркуляция вектора . Потенциал.

Работа по перемещению заряда в электрическом поле опред A=q(1-2) или А=qU. Если заряд перемещают между точками с одинаковыми потенциалом, то работа перемещения заряда равна нулю. Точно так же как равна нулю и работа перемещения заряда по замкнутой траектории. В однородном электростатическом поле работа перемещения заряда q может быть опред по ф-ле A=Eqd, (d=Scos), где E – напряженность этого поля, а d – проекция перемещения заряда q на силовую линию этого поля, угол между направлением перемещения S и вектором Е. Если заряд перемещается по силовой линии, то d – модуль перемещения. Если заряд перемещается перпендикулярно силовым линиям, то =900, соs =0и А=0. В каждой точке однородного электрического поля напряженность одинакова по величине и направлению, а потенциал нет, так как он понижается при переходе от точек, которые ближе к положительным зарядам – источникам, к точкам, которые ближе к отрицательным зарядам источникам. Точки с одинак потенциалами располаг на поверхностях, перпендикулярных линиям вект E. Такие поверхности наз эквипотенциальными. Работа перемещения заряда q вдоль эквипотенциальной поверхности равна нулю, так как A = q(1-2)=0. Потенциал  - это энергетическая характеристика электрического поля, тогда как напряженность E – это его силовая характеристика, потому что потенциал равен потенциальной энергии, которой обладает единичный заряд в данной точке поля, а напряженность равна силе, с которой поле действует на этот единичный заряд.

27Связь между напряженностью поля и потенциалом. Эквипотенциальные поверхности и силовые линии.

Для установления связи между силовой характеристикой электрического поля напряжённостью и его энергетической характеристикой  потенциаломрассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: dA = q dl, эта же работа равна убыли потенциальной энергии заряда q: dA =  dWп =  q d, где d - изменение потенциала электрического поля на длине перемещения dl. Приравнивая правые части выражений, получаем: dl  d или в декартовой системе координат

Ex dx + Ey dy + Ez dz = d,      (1.8)

где Ex, Ey, Ez - проекции вектора напряженности на оси системы координат. Поскольку выражение (1.8) представляет собой полный дифференциал, то для проекций вектора напряженности имеем

откуда 

 .

Стоящее в скобках выражение является градиентом потенциала , т. е.

E =  grad  = .

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность направлена в сторону убывания потенциала.

Рассмотрим электрическое поле, создаваемое положительным точечным зарядом q (рис. 1.6). Потенциал поля в точке М, положение которой определяется радиус-вектором r, равен  = q / 40r. Направление радиус-вектора r совпадает с направлением вектора напряженности E, а градиент потенциала направлен в противоположную сторону. Проекция градиента на направление радиус-вектора

 .

Проекция же градиента потенциала на направление вектора , перпендикулярного вектору r, равна

 ,

т. е. в этом направлении потенциал электрического поля является постоянной величиной (  const).

В рассмотренном случае направление вектора r совпадает с направлением рис. 1.6

силовых линий. Обобщая полученный результат, можно утверждать, что во всех точках кривой, ортогональной к силовым линиям, потенциал электрического поля одинаков. Геометрическим местом точек с одинаковым потенциалом является эквипотенциальная поверхность, ортогональная к силовым линиям.

  рис. 1.7

При графическом изображении электрических полей часто используют эквипотенциальные поверхности. Обычно эквипотенциали проводят таким образом, чтобы разность потенциалов между любыми двумя эквипотенциальными поверхностями была одинакова. На рис. 1.7 приведена двухмерная картина электрического поля. Силовые линии показаны сплошными линиями, эквипотенциали  штриховыми.

Подобное изображение позволяет сказать, в какую сторону направлен вектор напряжённости электрического поля; где напряжённость больше, где меньше; куда начнёт двигаться электрический заряд, помещённый в ту или иную точку поля. Так как все точки эквипотенциальной поверхности находятся при одинаковом потенциале, то перемещение заряда вдоль нее не требует работы. Это значит, что сила, действующая на заряд, все время перпендикулярна перемещению

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]