Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
116
Добавлен:
30.04.2013
Размер:
1.5 Mб
Скачать

11/ Классическая теория электропроводности металлов (теория Друде-Лоренца).

Для выяснения природы носителей тока был поставлен ряд опытов. Рикке в 1901 году взял три цилиндра - два медных и один алюминиевый-с хорошо отшлифованными торцами, взвесил их и сложил последовательно медь-алюминий –медь. Через такой составной проводник в течение года непрерывно пропускался постоянный ток. За год через этот проводник прошел заряд порядка 103 Кл. Исследования цилиндров показало, что пропускание тока не повлияло на вес цилиндров, и не было обнаружено проникновение одного металла в другой на торцах цилиндров. Таким образом, опыты показывали, что перенос заряда в металле осуществляется не атомами. Можно было предположить, что заряд переносится электронами. Но чтобы это доказать, надо было определить значение удельного заряда носителей тока (удельный заряд- это отношение заряда к массе частицы).

Если в металлах имеются свободные заряженные частицы, то при движении проводника частицы движутся вместе с ним. Если проводник резко затормозить, то свободные частицы некоторое время должны двигаться по инерции, в результате чего в проводнике возникнет импульс тока и будет перенесен некоторый заряд.

Пусть проводник движется со скоростью v0. Начнем тормозить проводник с ускорением . Свободные заряды продолжают двигаться по инерции и приобретают относительно проводника ускорение. Такое же ускорение можно сообщить носителям заряда, если их поместить в электрическое поле напряженностью Е.

.

Получить такое поле можно, приложив к концам проводника разность потенциалов , гдеl – длина проводника. По проводнику потечет ток: , а, следовательно, за времяdt через сечение проводника пройдет заряд . Таким образом, заряд, прошедший за все время торможения, равен.

Измерив , можно определить удельный заряд носителей тока, а направление импульса тока даст знак носителей.

Таким образом, ток в металле обусловлен свободными электронами. При образовании кристаллической решетки слабо связанные валентные электроны отщепляются от атомов, и поступают в собственность всего куска металла. Концентрация свободных носителей заряда порядка .

Исходя из представления о свободных электронах, П. Друде и Х. Лоренц создали теорию электропроводности металлов. Согласно этой теории свободные электроны ведут себя как молекулы идеального газа. В промежутках между столкновениями они движутся свободно, пробегая некоторый путь . Столкновения электронов осуществляется преимущественно с ионами решетки, и это приводит к тепловому равновесию между электронным газом и кристаллической решеткой. Среднюю скорость теплового движения электронов можно произвести по формуле:. Приэта скорость порядка 105 м/с. При включении поля на хаотическое движение частиц накладывается упорядоченное движение с некоторой средней скоростью . Ее можно оценить из выражения.

Предельно допустимая плотность тока для медных проводников

107 А/м2, а концентрация электронов . Заряд электрона равен 1.6·10-19 Кл. Подставляя все эти значения в формулу (2) получаем, что средняя скорость направленного движения частиц равна . Т.е. даже при очень больших плотностях тока средняя скорость теплового движения много больше средней скорости направленного движения, вызванного электрическим полем.

Получим основные законы электропроводности на основе теории Друде- Лоренца. Согласно этой теории при соударении электрона с ионом кристаллической решетки приобретенная электроном дополнительная энергия полностью передается иону, и, следовательно, скорость электрона становится равной нулю. Под действием поля электроны ускоряются и приобретают ускорение, равное . За время свободного пробегаскорость электрона увеличивается до. Считая, что скорость всех электронов одинакова, можно записать, что время свободного пробега электрона равно, гдеu практически равна скорости хаотического движения электронов. . Скорость изменяется линейно за время свободного пробега, поэтому средняя скорость упорядоченного движения электронов равна. Плотность тока:.

Таким образом, плотность тока оказалась пропорциональной напряженности. Выражение (3) можно записать в виде:

Полученная формула выражает закон Ома в дифференциальной форме. Здесь - коэффициент пропорциональности, проводимость металла.

Если бы не было столкновений между электронами и ионами решетки, то проводимость была бы бесконечной. Определим температурную зависимость проводимости. Концентрация электронов и длина свободного пробега не должны зависеть от температуры. От температуры зависит только средняя скорость теплового движения. . Следовательно, проводимость обратно пропорциональна корню из Т, а сопротивление возрастает как корень из Т. Эксперимент показывает, что сопротивление в широком интервале температур пропорционально температуре, и только при низких температура турах. Таким образом, теория проводимости металлов Друде-Лоренца, приводя к закону Ома, не может объяснить температурной зависимости сопротивления. Объяснение может дать только квантовая теория.

У ряда металлов при низких температурах наблюдается явление сверхпроводимости: при понижении температуры, начиная с некоторой температуры, называемой критической, сопротивление становится равным нулю. Сверхпроводимость может нарушаться магнитным полем. Явление сверхпроводимости – это чисто квантовое явление, и его мы будем рассматривать в следующем семестре.

Получим закон Джоуля-Ленца на основании теории Друде-Лоренца. К концу свободного пробега электрон приобретает кинетическую энергию: , (5)

Здесь учтено, что для электрона иметь скорость v и u статистически независимые события, а средняя скорость теплового движения . Последнее слагаемое в формуле (5)- средняя кинетическая энергия теплового движения. Т.о. в присутствии поля, электрон приобретает дополнительную энергию. Столкнувшись с ионом, электрон полностью передает эту энергию кристаллической решетке. Эта энергия идет на увеличение внутренней энергии решетки, т.е. на нагревание. Каждый электрон за секунду претерпеваетстолкновений. Следовательно, в единице объема за единицу времени должно выделится тепло:. Коэффициент присовпадает с. Т.о.- это и есть закон Джоуля-Ленца.

Закон Видемана–Франца. Видеман и Франц установили связь между коэффициентом теплопроводности и электропроводности для всех металлов. Теплопроводность металлов, как показывает опыт, значительно выше теплопроводности диэлектриков. Из этого следует, что теплопроводность в металлах осуществляется в основном не кристаллической решеткой, а свободными электронами. Поэтому, рассматривая электроны, как одноатомный газ, используем формулу для коэффициента теплопроводности газов: . Удельная теплоемкость одноатомного газа:. Отношение коэффициента теплопроводности к коэффициенту электропроводности:. Т.о. отношение коэффициента теплопроводности к коэффициенту электропроводности пропорционально температуре. Это соотношение хорошо согласуется с экспериментальными данными. Но уточненные Лоренцем расчеты получили другое соотношение между и , которое хуже согласуется с экспериментальными данными. Т.е. классическая теория дает только качественное соответствие закона Видемана –Франца.

Теплоемкость металла можно представить как теплоемкость решетки и теплоемкость электронного газа. Каждый атом колеблется около своего положения равновесия и имеет три степени свободы. Энергия, приходящаяся на каждую колебательную степень свободы . Поэтому молярная теплоемкость решетки:. Теплоемкость электронного газа:. Следовательно, полная теплоемкость металла. У диэлектриков теплоемкость обусловлена только решеткой. Т.е. теплоемкость металла должна быть в 1.5 раза больше теплоемкости диэлектрика, а эксперимент показывает, что их теплоемкости почти одинаковы. Объяснение всех несоответствий классической теории электропроводности металлов с экспериментом объясняется только квантовой теорией металлов.

Соседние файлы в папке Коллоквиум