Каждое слагаемое в выражении xn+1 больше соответствующего слагаемого в выраже-
нии xn, и, кроме того, у xn+1 добавляется ещё
одно положительное слагаемое. Следовательно, последовательность (xn) возрастающая.
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
2. Покажем, что последовательность (xn) - ограничена сверху. Действительно
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
xn = |
1 + |
1 |
n |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
|
1 |
1 |
|
1 |
|
|
|
|
|
|
1 |
1 |
|
|
|
|
1 |
1 |
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
= 1 + 1 + |
|
+ |
|
|
|
|
|
|
|
|
|
+ |
· · · |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2! |
− n |
|
|
|
|
3! |
− n |
− n |
|
|
|
|
|
|
+ |
|
1 |
1 |
|
|
1 |
1 |
|
|
|
2 |
1 |
− |
k − 1 |
+ |
· · · |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k! |
− n |
− n · · · |
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
1 |
1 |
|
|
1 |
1 |
|
|
2 |
1 |
− |
n − 1 |
|
< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n! |
− n |
− n · · · |
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
< 1 + 1 + |
|
|
+ |
|
|
+ · · · + |
|
< |
|
|
|
|
|
|
|
2! |
3! |
n! |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1 |
|
+ · · · |
|
|
1 |
|
|
|
|
< 1 + 1 + |
|
|
+ |
|
|
|
+ |
|
|
|
= |
|
|
2 |
22 |
|
2n−1 |
|
|
|
|
|
|
|
|
= 1 + |
1 − |
1 |
|
|
|
1 |
|
|
|
|
|
|
|
|
2n |
< 1 + |
|
|
= 3. |
|
|
|
|
|
|
|
1 − |
21 |
|
|
|
|
|
|
|
|
|
|
|
1 − 21 |
|
|
|
|
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
xn = |
1 + |
1 |
n = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
1 |
1 |
|
|
|
1 |
|
|
|
|
|
|
|
1 |
|
|
1 |
|
|
|
|
|
1 |
1 |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
= 1 + 1 + |
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
· · · |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2! |
− n |
|
|
|
|
|
3! |
− n |
− n |
|
|
|
|
|
|
|
|
|
|
+ |
1 |
|
1 |
|
|
|
1 |
1 |
|
|
|
|
2 |
1 |
− |
k − 1 |
+ |
· · · |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k! |
|
− n |
− n · · · |
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
1 |
1 |
|
|
|
1 |
1 |
|
|
|
2 |
1 |
− |
n − 1 |
|
< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n! |
− n |
− n · · · |
n |
|
|
|
|
1 |
|
1 |
|
+ · · · + |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
< 1 + 1 + |
|
|
+ |
|
|
|
< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2! |
3! |
n! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
1 |
|
|
|
+ · · · + |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
< 1 + 1 + |
|
|
|
+ |
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
2 |
|
22 |
|
|
2n−1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= 1 + |
1 − |
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2n |
< 1 + |
|
|
|
|
|
= 3. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 − |
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 − 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
xn = |
1 + |
1 |
n = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
1 |
1 |
|
|
|
|
1 |
|
|
|
|
|
|
|
1 |
|
1 |
|
|
|
|
|
|
1 |
1 |
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
= 1 + 1 + |
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
· · · |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2! |
− n |
|
|
|
|
|
3! |
− n |
− n |
|
|
|
|
|
|
|
|
|
+ |
1 |
|
1 |
|
|
|
1 |
1 |
|
|
|
|
|
2 |
1 |
− |
k − 1 |
+ |
· · · |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k! |
|
− n |
− n · · · |
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
1 |
|
1 |
|
|
|
1 |
1 |
|
|
2 |
1 |
− |
n − 1 |
|
< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n! |
− n |
− n · · · |
n |
|
|
|
|
1 |
|
1 |
|
|
+ · · · + |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
< 1 + 1 + |
|
|
+ |
|
|
|
|
< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2! |
3! |
n! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
1 |
|
|
|
|
· · · |
|
|
1 |
|
|
|
|
|
|
|
|
|
|
< 1 + 1 + |
|
|
+ |
|
|
+ |
+ |
|
|
|
= |
|
|
|
|
|
|
|
2 |
22 |
|
2n−1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= 1 + |
1 − |
1 |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2n |
< 1 + |
|
|
|
= 3. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 − |
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 − 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
xn = |
1 + |
1 |
n = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
1 |
1 |
|
|
|
|
1 |
|
|
|
|
|
|
|
1 |
|
1 |
|
|
|
|
1 |
1 |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
= 1 + 1 + |
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
+ |
· · · |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2! |
− n |
|
|
|
|
|
3! |
− n |
− n |
|
|
|
|
|
|
|
+ |
1 |
|
1 |
|
|
|
1 |
1 |
|
|
|
|
2 |
|
1 |
− |
k − 1 |
+ |
· · · |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k! |
|
− n |
− n · · · |
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
1 |
1 |
|
|
|
1 |
1 |
|
|
2 |
1 |
− |
n − 1 |
|
< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n! |
− n |
− n · · · |
|
|
n |
|
|
|
|
1 |
|
1 |
|
|
+ · · · + |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
< 1 + 1 + |
|
|
+ |
|
|
|
< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2! |
3! |
n! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
1 |
|
|
|
+ · · · + |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
< 1 + 1 + |
|
|
+ |
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
2 |
22 |
|
|
2n−1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= 1 + |
1 − |
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2n |
< 1 + |
|
|
|
|
|
= 3. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− |
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 − 21 |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
xn = |
1 + |
1 |
n = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
1 |
1 |
|
|
|
|
1 |
|
|
|
|
|
|
|
1 |
|
|
1 |
|
|
|
|
|
1 |
1 |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
= 1 + 1 + |
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
· · · |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2! |
− n |
|
|
|
|
|
3! |
− n |
− n |
|
|
|
|
|
|
|
+ |
1 |
|
1 |
|
|
|
1 |
1 |
|
|
|
|
2 |
|
1 |
− |
k − 1 |
+ |
· · · |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k! |
|
− n |
− n · · · |
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
1 |
1 |
|
|
|
1 |
1 |
|
|
2 |
1 |
− |
n − 1 |
|
< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n! |
− n |
− n · · · |
|
|
n |
|
|
|
|
1 |
|
1 |
|
|
+ · · · + |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
< 1 + 1 + |
|
|
+ |
|
|
|
|
< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2! |
3! |
n! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
1 |
|
|
+ · · · + |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
< 1 + 1 + |
|
|
+ |
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
2 |
22 |
|
|
2n−1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= 1 + |
1 − |
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2n |
< 1 + |
|
|
|
|
|
= 3. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− |
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 − 21 |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Итак, последовательность (xn) - монотонно возрастающая и ограниченная сверху, следовательно, в силу теоремы 23, она имеет предел. Этот предел принято обозначать буквой e, т.е.
Можно показать, что число e - иррациональное и значение e = 2, 71828 . . . .
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
2.2.11. Критерий Коши.
Рассмотрим вопрос об общем признаке существования предела последовательности. Заметим, что в определении 24 предела последовательности фигурирует уже тот предел, су-
ществование которого мы только ещё хотим установить.
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Определение 46. Последовательность (xn) называется фундаментальной, если ε > 0N = N(ε) N такое, что n > N и p N :
|xn+p − xn| < ε.
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit