Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Mtdbthn1

.pdf
Скачиваний:
61
Добавлен:
02.05.2015
Размер:
840.21 Кб
Скачать

При изучении удельной и эквивалентной электрической проводимости, нужно уяснить, что их величину определяют валентность ионов, число ионов в единице объема (в случае удельной электрической проводимости) и в объем, содержащем килограмм - эквивалент массы (в случае эквивалентной электрической проводимости) и их абсолютная скорость.

Тогда станет понятным влияние на удельную и эквивалентную электрическую проводимость размера радиуса иона, степени сольватации, природы растворителя, температуры, концентрации электролита и неэлектролита, вязкости раствора и особенно в случае сильных электролитов наличием электростатистического взаимодействия между ионами, приводящего к образованию ионных атмосфер. Необходимо знать отличие между слабыми и сильными электролитами, также, что такое активность и способы определения. Для разбавленных растворов сильных электролитов была Дебаем и Гюккелем разработана теория, отражающая влияние электростатического взаимодействия между ионами на различные свойства раствора.

При изучении гальванических элементов нужно уяснить термодинамику электрохимических цепей, научиться применять уравнения Нернста для вычисления ЭДС различных типов гальванических цепей: химических, концентрационных, окислительновосстановительных.

В концентрационных элементах ток возникает за счет выравнивания концентрации ионов или вещества электрода, а в химических элементах - за счет химической реакции.

Необходимо знать применение кондуктометрического метода для титрования окрашенных растворов, определения константы растворимости, свободной энергии и теплоты диссоциации.

Раздел 5. Химическая кинетика

Химическая кинетика - это учение о химическом процессе, его механизме и закономерностях протекания во времени.

Вначале следует ознакомиться с основными понятиями кинетики (скорость реакции, порядок реакции, молекулярность, константа скорости), а затем перейти к изучению основных положений, теорий химической кинетики (теория Аррениуса, теория активных столкновений, теория переходного состояния).

Теория Аррениуса позволила наметить путь теоретического расчета скорости реакции, т.к. она предсказала правильный ход зависимости константы скорости от температуры, позволила рассчитать для ряда реакций константы скорости по известному значению энергии активации, с успехом объяснила течение мономолекулярных реакций.

Недостаток этой теории в том, что она не всегда позволяет предсказать значение энергии активации.

Теория активированного комплекса дает принципиальную возможность расчета энергии активации на основании учения о строении вещества. необходимо уделить внимание кинетике сложных реакций (фотохимических, ценных, гомогенно-каталитических). Так как многие процессы пищевой промышленности идут с участием катализаторов биологического происхождения, то следует особое внимание уделить учению о катализе. Катализатор сохраняет неизменными свои свойства после реакции, не смещает состояние равновесия химической реакции, а только ускоряет момент наступления равновесия.

КОЛЛОИДНАЯ ХИМИЯ

Раздел 6. Дисперсные системы и поверхностные явления

Коллоидная химия - наука о поверхностных явлениях и дисперсных системах. Рекомендуется вначале уяснить классификацию этих систем, а затем перейти к изуче-

нию многочисленных свойств дисперсных систем.

Для дисперсных систем, обладающих избытком свободной поверхностной энергией, характерен процесс адсорбции.

Адсорбция в широком смысле означает любое изменение концентрации вещества у поверхности раздела двух фаз, сопровождающихся энергетическим изменением системы - выделением или поглощением теплоты. Вещество, на поверхности которого происходит адсорбция, - адсорбент, а адсорбирующееся вещество - адсорбтив (адсорбат).

Накопление молекул на твердом адсорбенте (адсорбция) может быть чисто физическим процессом - физическая адсорбция, либо сопровождаются химической реакцией на поверхности адсорбента - хемосорбция. Процесс адсорбции обратим, т.е. наблюдается обратный процесс - процесс десорбции. При постоянной температуре наблюдается состояние адсорбированного равновесия: адсорбция десорбция.

Теплоты при физической адсорбции выражаются небольшими величинами (1 ÷ 20кДж/моль). В случае хемосорбции они значительны, составляют сотни кДж/моль.

Хемосорбция - химический процесс, который требует значительной энергии активации, поэтому увеличение температуры способствует хемосорбции.

Ленгмюр создал и обосновал теорию мономолекулярной адсорбции газов на твердом адсорбенет, предположив, что активные центры равномерно распределены по поверхности и

адсорбция локализована.

 

 

Уравнение изотермы мономолекулярной адсорбции имеет вид:

 

kp

 

 

α = α1+ kp

,

(6.1)

где α - адсорбция, моль/м2; α- предельная адсорбция (емкость монослоя), моль/м2;

k - константа адсорбционного равновесия;

p - равновесное давление адсорбтива в объеме фазы, граничащей с адсорбентом.

При р 0 d = αkp, при р → ∞ наступает насыщение адсорбционного слоя и а= а. Уравнение (6.1) хорошо выражает адсорбцию на твердых поверхностях при небольших давлениях газа в окружающем пространстве, а также адсорбцию поверхностно-активных молекул из растворов при небольших концентрациях (в этом случае вместо р пользуются величиной с). По значению αможет быть определена важная характеристика твердого адсорбента - удельная активная поверхность Sуд. Если известна So - площадь, занимаемая одной молекулой газа или поверхностно-активного вещества в насыщенном монослое, то:

Sуд = αSo N A ,

(6.2)

где NA - число Авогадро.

Весьма полезно будет решение задач на вычисление толщины монослоя и определение

So.

В зависимости от внешних условий, природы адсорбента и адсорбтива адсорбция может протекать с образованием на поверхности полимолекулярного адсорбционного слоя, в таком случае процесс адсорбции паров вещества на твердых адсорбентах не согласуется с изотермой Ленгмюра.

Брунауэр, Эммет и Теллер (1935-40гг.) создали теорию полимолекулярной адсорбции паров на твердых, гладких и пористых адсорбентах (теория БЭТ). Согласно этой теории на активных точках поверхности адсорбента при определенных условиях могут образовываться конденсированные полимолекулярные слои. Количество адсорбированного вещества, рассчитывается по уравнению:

ρ c ρs

a = a

 

 

 

 

 

 

 

 

,

(6.3)

 

 

ρ

 

ρ

(

)

 

 

1

 

1

+

ρs

 

c 1

 

 

 

 

 

ρs

 

 

 

 

 

где а. - предельная мономолекулярная адсорбция на твердом адсорбенте; с - константа уравнения;

ρ - равновесное давление пара в окружающем пространстве при заданных условиях; ρs - давление насыщенного пара при данной температуре.

Используя уравнение БЭТ в линейной форме при низкотемпературной адсорбции простых веществ можно (азот, аргон, криптон) вычислить Sуд по уравнению (6.2). Применение уравнения БЭТ для расчета адсорбции мелкопористыми адсорбентами затруднено и определение удельной активной поверхности адсорбента Sуд по а. не всегда дает правильные результаты.

Явление адсорбции на границе с жидкой фазой описывается уравнением Гиббса:

 

 

 

 

Г = −

С

 

dτ

 

 

 

 

 

 

,

 

 

RT

dc

где Г - адсорбция, моль/м2;

 

 

 

 

С - равновесная концентрация вещества в растворе;

Т - абсолютная температура;

 

 

 

 

R - универсальная газовая постоянная.

 

 

 

 

 

dτ

 

 

 

 

 

Величина

 

= G называется поверхностной активностью. Мерой поверхностной ак-

 

dc

 

 

 

 

 

 

 

 

dτ

 

 

 

 

тивности считают

 

 

= G при С 0.

 

 

 

 

 

 

 

dc

 

 

 

 

Если вещество, адсорбируясь, понижает поверхностное натяжение данной границы раздела фаз, то оно поверхностно активно; поверхностная активность G > 0 и адсорбция Г > 0, т.е. происходит накопление молекул этого вещества на данной поверхности раздела.

На границе раздела вода-воздух (пар) или вода-масло поверхностно активны органические кислоты, спирты, нитро- и сульфопроизводные, амины, белки, мыла и моющие вещества.

Если вещество при введении его в раствор повышает поверхностное натяжение данной поверхности раздела фаз, то оно поверхностно неактивно; поверхностная активность G < 0 и адсорбция Г < 0. На границе раздела вода-воздух (пар) или вода-масло поверхностнонеактивными веществами, будут минеральные соли, кислоты, основания.

Зависимость поверхностного натяжения раствора от концентрации поверхностноактивного вещества выражается эмпирическим уравнением Шишковского:

σ = σo σ = Aln(1 + kc) ,

где σо и σ - поверхностное натяжение чистого растворителя и раствора на границе с воздухом (паром);

А - константа;

k - индивидуальная константа, характеризующая поверхностную активность вещества; c - концентрация вещества в растворе.

Обратите внимание на то, что уравнение адсорбции Гиббса и уравнение Лэнгмюра тождественны, т.к. они выражают распределение ПАВ между объемом одной из фаз и межфазной поверхностью. Это можно подтвердить тем, что, пользуясь уравнением Шишковского, можно перейти от уравнения Гиббса к уравнению Лэнгмюра.

Полезно знакомство с эмпирическим уравнением Френдлиха:

kc 1n =

x

,

m

 

 

где mx = a ;

k и 1 - эмпирические коэффциенты.

n

Уравнение Френдлиха используют для расчета молекулярной адсорбции.

Лэнгмюр и Гаркинс показали, что молекулы ПАВ дифильны (т.е. содержат гидратирующуюся полярную группу - ОН, СООН, NH2, NO2, SO3H и неполярную негидратирующуюся - углеводородный радикал) за счет чего могут одновременно взаимодействовать с водой и углеродными средами. Поверхностная активность таких молекул зависит от длины углеводородного радикала. По правилу Траубе-Дюкло в гомологическом ряду жирных кислот или спиртов поверхностная активность соединений растет, увеличиваясь в 3,2 раза на каждую группу - СН2. Правило Траубе-Дюкло соблюдается только для водных растворов ПАВ. Для неводных растворов этих же веществ наблюдается «обращение» правила.

При достаточно большой концентрации ПАВ в растворе на поверхности раздела формируется насыщенный мономолекулярный слой, в котором молекулы находятся в строго ориентированном состоянии.

Многие нерастворимые и малорастворимые дифильные соединения при нанесении на поверхность воды самопроизвольно растекаются по ней, образуя чрезвычайно растянутые пленки, в которых молекулы ПАВ ведут себя подобно молекулам двухмерного газа. В зависимости от природы вещества поверхности пленки могут быть газообразными или конденсированными (жидкими и твердыми). Газообразные пленки образуют низкомолекулярные кислоты, спирты и амины.

Конденсированные пленки образуют вещества с длинной углеводородной цепью (число атомов углерода больше 20). Ряд веществ - мыла, белки и др. - формируют гелеобразные поверхностные пленки большой прочности.

Измерение площади пленки в зависимости от давления является одним из основных современных методов изучения монослоев. Эти измерения производятся с помощью поверхнсотных весов (весы Лэнгмюра, Адома, Ахматова, Трапезникова).

Особенностью ионной адсорбции является её селективность. Избирательная адсорбция одного из ионов зависит не только от его природы, но и от свойств адсорбента.

Адсорбенты могут иметь на своей поверхности полярные группы (основные или кислые). При адсорбции из растворов электролитов может быть обменная адсорбция между адсорбентом и раствором. Основные адсорбенты (феррогель, алюмогель) отдают в раствор группу ОН и её место занимает анион из раствора. Кислые адсорбенты (силикогель, глина, кремневая кислота) способны к обмену катионов. Существуют также амфотерные адсорбенты (белки, алюмосиликаты), адсорбционная способность которых зависит от рН среды.

К явлениям адсорбции близки явления смачивания, которые определяются интенсивностью взаимодействия между молекулами различных веществ. Смачивание - это физикохимическое явление самопроизвольного увеличения площади константы жидкости с поверхностью твердого тела. Степень смачивания поверхности жидкости определяются косинусом краевого угла смачивания (θ).

Равновесные краевые углы определяются уравнением Юнга:

cosθ = σтг σжт .

σжг

Если косинус краевого угла больше нуля (угол < 90о), то жидкость смачивает поверхность, если меньше нуля (угол > 90о), то не смачивает.

Твердые поверхности, которые смачиваются водой, называются гидрофильными, не смачивающиеся водой - гидрофобными.

Впроцессе гидрофибизации можно гидрофильную твердую поверхность перевести в гидрофобную, и. наоборот, гидрофобную сделать гидрофильной (процесс гидрофилизации).

Вкачестве гидрофобизирующих веществ используют мыла тяжелых металлов, кремнийорганические соединения; гидрофилизирующих - мыла натрия и калия, сапонин.

С явлением смачивания тесно связано явление адгезии. Влияние смачивания на адгезионное взаимодействие отражает уравнение Дюпре-Юнга:

Wa = σжг (1 + cosθ)

Чем лучше смачивание (меньше θ), тем больше работа адгезии.

Раздел 7. Основные свойства дисперсных систем

К молекулярно-кинетическим свойствам коллоидных систем относятся броуновское движение, диффузия, осмотическое давление и седиментационная устойчивость.

Броуновское движение - это хаотическое движение частиц дисперсной фазы под действием теплового движения молекул дисперсной среды. Теория броуновского движения была разработана Эйнштейном (1905) и Смолуховским (1906). Броуновское движение характери-

зуют средним сдвигом (видимым перемещением коллоидной частицы в дисперсионной среде за время t).

Уравнение Эйнштейна-Смолуховского связывает средний сдвиг с параметрами дисперсионной среды и с размерами движущихся частиц:

 

2

 

RTt

 

 

=

,

(7.1)

 

3πrηN A

где t - время наблюдения, с; r - радиус частиц, м;

η - вязкость среды, Па с.

Из уравнения следует, что интенсивность броуновского движения возрастает с повышением температуры, уменьшением вязкости среды и размеров частиц.

Следует запомнить, что явление диффузии тесно связано с тепловым движением частиц. Эйнштейн показал, что коэффициент диффузии (D) для сферических частиц имеет вид:

D =

RT

 

6πηrN A .

(7.2)

Из уравнения Эйнштейна следует, что коэффициент диффузии зависит от свойства дисперсионной среды и от размеров диффундирующих частиц. С увеличением радиуса частиц, вязкости золей коэффициент диффузии уменьшается, а с ростом температуры увеличивается. Существует связь между коэффициентом диффузии и средним сдвигом частиц:

 

2 = 2Dt .

(7.3)

Частицы любой дисперсной системы, находясь в сфере притяжения земли, испытывают действия сил земного притяжения. С другой стороны, взвешенные частицы подвержены диффузии, стремящейся выровнять концентрацию во всех точках системы. При поступлении равновесия, частицы дисперсной фазы определенным образом распределяются относительно поверхности земли. Распределение частиц по высоте при достижении равновесия определяет седиментационную устойчивость коллоидной системы. За меру седиментационной устойчивости принимают гипсометрическую высоту, на которой νh - численная концентрация в два раза меньше исходной численной концентрации νо на поверхности земли.

Гипсометрическую высоту определяют по формуле:

 

 

 

 

 

rt ln

vo

 

 

 

 

 

h =

vh

,

mg

 

где g - ускорение свободного падения; m - масса частицы.

Седиментационно-устойчивые коллоидные системы - золи, стабилизованные эмульсии могут сохраняться без осаждения долгое время.

Неустойчивые системы - суспензии, нестабилизованные эмульсии, пыли; для них характерен процесс седиментации - оседание частиц без слипания под действием силы тяжести.

Седиментация частиц в жидкой среде подчиняется закону Стокса:

r = Ku ,

(7.5)

где r - радиус оседающих частиц, м;

u - скорость седиментации частиц, м/с;

K - константа, характеризующая дисперсионную среду и дисперсную фазу:

K =

9

 

η

 

 

 

.

(7.6)

2

(ρ ρo )g

Суспензии, встречающиеся в практике, чаще всего полидисперсны, содержат частицы различных размеров. Зная скорость седиментации, можно рассчитать радиусы оседающих частиц. Седиментационный анализ суспензии составляет основу метода расчета кривых распределения вещества суспензии по радиусам частиц. Золи обладают достаточно высокой степенью дисперсности и седиментационно - устойчивы в гравитационном поле. В центробежном поле, создаваемом центрифугой, эти системы становятся неустойчивыми.

Относительное давление фаз дисперсных систем можно наблюдать также под действием электрического поля, что обусловлено наличием на межфазных поверхностях двойного электрического поля (ДЭС), возникающего вещества межфазного взаимодействия. При подготовке данных вопроса следует обратить внимание на современную теорию ДЭС, на теоретические понятия - потенциал поверхности ϕо и потенциал адсорбционного слоя (потенциал

Штерна) ϕб.

Коллоидным системам свойственны такие явления, как электрофорез, электроосмос, потенциал течения и потенциал осаждения. Эти явления называются электрокинетическими и объясняются наличием ДЭС на поверхности ядра мицеллы.

При электрофорезе или электроосмосе на границе скольжения между движущейся коллоидной частицей и окружающей средой возникает электрокинетический потенциал (ξ) или дзета-потенциал. Расчет ξ - потенциала частиц осуществляют по уравнению СмолуховскогоГельмгольца:

ξ =

ηUo

,

(7.7)

εεo E

 

 

 

где η - вязкость среды;

Uo - линейная скорость движения фаз; Е - напряженность электрического поля; εо - электрическая постоянная;

ε - относительная диэлектрическая проницаемость.

Дзета - потенциал всегда меньше ϕо-потенциала на границе твердая частица - дисперсионная среда, обусловленных поверхностным зарядом. Слой ионов, ближайшей к твердой поверхности (адсорбционной), настолько прочно с ней связано, что при положении электрического поля передвигается вместе с ядром, и ξ-потенциал соответствует границе адсорбционного и диффузионного слоев.

Гюккель впервые указал на существование электрофоретического торможения: под дествием внешнего электрическго поля диффузный ионный слой перемещается в направлении, противоположном движению частиц. Происходит поляризация двойного слоя, возникают диполи, электрическое поле которых направлено противоположно направлению внешнего поля, в результате электрофоретическая скорость уменьшается. При наложении электрического поля заряженная частица подвергается также действию электрической релаксации, что приводит к уменьшению электрофоретической скорости.

В основу оптических свойств дисперсных систем положено взаимодействие электромагнитного излучения, обладающего определенной энергией и веществом т.е. дисперсной фазой.

Дисперсные системы ярко окрашены и способны поглощать и рассеивать свет. Это зависит от соотношения размеров частиц и длины волны падающего света. Если радиус частицы по своим размерам значительно превышает длину волны падающего света (r >> λ), то происходит отражение света от поверхности частицы, при этом часть света может испытывать преломление, полное внутреннее отражение и поглощение. Если радиус частицы меньше длины волны падающего света, но соизмерим с ней (r 0,1λ), то луч, падающий на поверхность частицы, рассеивается во всех направлениях.

Следует обратить внимание на уравнение Релея, связывающего светорассеяние дисперсной системы с её свойствами (численная концентрация частиц, их объем, коэффициент преломления) и с длиной волны падающего света. Уравнение Релея было выведено для «белых» золей, т.е. для неокрашенных дисперсных систем, имеющих форму шара.

Ознакомьтесь с оптическими методами определения размеров и форм частиц золей (нефелометрия, ультрамикроскопия, турбидимтрия).

Явление светопоглощения окрашенными средами описывается уравнением Ламберта- Бера-Бугера, которое в определенных условиях может быть применимо и для золей:

J = J o e εc l ,

(7.8)

где J - количество световой энергии, вышедшее после поглощения слоем окрашенной сре-

ды;

 

J0 - количество световой энергии, падающей на слой окрашенной среды;

 

ε - константа светопоглощения;

 

с - концентрация вещества в слое;

 

l - толщина поглощающего слоя.

 

Так как ln

Jo

= D - оптическая плотность, то уравнение (7.8) можно записать так:

 

 

J

 

D = εcl .

(7.9)

Оптическая плотность D характеризует ослабление света данной системы в целом, обусловленной как светопоглощением, так и светорассеянием. Если имеем дело с «белыми» золями (латексы, золи AgCl),светопоглощение отсутствует и D обусловлено только светорассеянием, то определение частиц золя возможно турбодиметрическим методом. В этом случае

D = τ = k λn ,

где τ - мутность, величина, характеризующая способность системы рассеивать свет;

n - показатель дисперсности, изменяется в пределах от 2 до 4 (при n = 4 высокодисперсная коллоидная система обладает рэлеевским светорассеянием, при n = 2 светорассеяние не подчиняется закону Рэлея). Результаты измерения τ рассчитывают так: по графику lgτ - lgλ находят показатель n как тангенс угла наклона полученной прямой к оси абцисс. По n определяют средний диаметр частиц золя, используя данные экспериментальной кривой Геллера [n = f(d)].

Раздел 8. Коагуляция, устойчивость и стабилизация дисперсных систем структурообразование в дисперсных системах

Нарушение устойчивости жидких дисперсных систем (лиозолей, суспензий и эмульсий) вследствие слипания их частиц называется коагуляцией. Способность частиц дисперсной фазы сопротивляется слипанию, т.е. образованию агрегатов, была названа Н.П Песковым агрегативной устойчивостью.

Коагуляция коллоидных систем наступает под влиянием различных факторов: введение электролитов, неэлектролитов, замораживание, кипячение, длительное перемешивание, воздействие солнечного света, введение посторонней твердой фазы.

Согласно современным взглядам за агрегативную устойчивость коллоидных систем ответственны электростатический (ионный) фактор и неэлектростатические факторы - струк- турно-механический, сольватационный, энтропийный.

Причиной устойчивости дисперсных систем, стабилизованных ионным фактором, является диффузно-построенный двойной ионный слой на поверхности коллоидной частицы. На поверхности ядра мицеллы могут адсорбироваться не только ионы, но и молекулы. Особенно эффективна адсорбция крупных, асимметрично построенных дифильных молекул мыла, моющих веществ, высокомолекулярных соединений. В этом случае на поверхности ядра образуется адсорбционный слой, который защищает частицы от слипания. При большой концентрации адсорбированных молекул мыл или моющих веществ на поверхности частиц и вблизи них начинается мицеллообразование и вторичный процесс - образование мицелляр-

ных структур, придающий адсорбированному слою механическую прочность. Этот фактор стабилизации получил название структурно-механического. В системах, стабилизированных молекулами ПАВ или высокомолекулярных соединений, лиофильность адсорбционного слоя наряду с его структурно-механическими свойствами обеспечивают агрегативную устойчивость дисперсной системы.

Дерягиным и учеными его школы было показано, что при сближении коллоидных частиц наряду с силами электростатической природы (электрическая составляющая расклинивающего давления) проявляются силы отталкивания неэлектрической природы (молекулярная составляющая расклинивающего давления). Им были развиты представления о расклинивающем давлении поверхностных слоев.

Устойчивость коллоидных систем связывают также со стабилизирующим действием адсорбционных слоев за счет изменения энтропии при тепловом движении и взаимном отталкивании гибких макромолекул, способных совершать микроброуновское движение (энтропийный фактор).

Проработанные вопросы кинетики коагуляции: медленной коагуляции при неполной потере агрегативной устойчивости и быстрой коагуляции, соответствующей полной потере агрегативной устойчивости частицами золя.

Современная теория устойчивости и коагуляции коллоидных систем, созданная Дерягиным, Ландау, Фервеем, Овербеком, получила название теории ДЛФО. Согласно этой теории устойчивость системы определяется балансом сил притяжения и отталкивания, возникающих между частицами, находящимися в тепловом броуновском движении, при их сближении.

Молекулярные силы притяжения между частицами обладают большим радиусом действия и играют важную роль в коагуляции. По Гамакеру, энергия притяжения двух сферических частиц зависит от расстояния между ними h по уравнению:

Uпр = −Аr(12h) ,

для небольших расстояний h << r, где r - радиус частицы;

А - константа молекулярных сил Вандер-Ваальса-Гамакера.

Силы отталкивания, возникающие между частицами, обусловлены взаимодействием их поверхностных слоев (ионных или молекулярных). При сближении двух ионостабилизированных частиц силы отталкивания возникают только при перекрытии их ионных слоев. При этом возникает «расклинивающее давление», направленное против сближения и обусловленное электрической силой, существующей в зазоре между частицами.

Потенциальные кривые в координатах энергии взаимодействия частиц - расстоянии между поверхностями частиц U = f(h) дают возможность судить о преобладании тех или иных сил по мере сближения. На малых расстояниях (h = 1,0нм) преобладает притяжение и на кривых U = f(h) образуется первый минимум (первая потенциальная яма). Глубина первого минимума может достигать 20-25 kT. На больших расстояниях (h = 10 ÷ 100нм) также преобладает притяжение и на потенциальной кривой появляется второй минимум (вторая потенциальная яма), глубина которого невелика и может изменяться от 0 до 5-10 kT.

На средних расстояниях (h = 1-10нм) преобладает отталкивание и на потенциальной кривой возникает максимум - потенциальный барьер отталкивания. Высота барьера изменяется от 0 до 100 kT в зависимости от концентрации электролитов и наличия в системе других стабилизаторов.

Высота потенциального барьера отталкивания и глубина ямы определяет возможность агрегации частиц при их сближении. Возможны следующие случаи:

1.Если высота барьера и глубина второго минимума невелики (<< kT), то частицы сближаются за счет броуновского движения до наименьшего расстояния (~ 0,2 ÷ 1 нм) с увеличением энергии системы на глубину первого минимума. Такие системы неустойчивы и агрегация частиц необратима.

2.Если высота потенциального барьера велика (>>kT), а глубина второго минимума мала (<< kT), в этом случае частицы не могут преодолеть барьер и расходятся без агрегации. Такие системы агрегативно устойчивы.

3.Если глубина второго минимума велика (~ 5 ÷ 10 kT), то происходит дальнее взаи-

модействие частиц.

Частицы соединяются с друг другом через прослойки жидкости и не изменяют свою индивидуальность и дисперсность.

Фиксация частиц во втором минимуме при больших концентрациях дисперсной фазы приводит к образованию коагуляционных структур. Они легко разрушаются при увеличении температуры или механическом воздействии. В системах, у которых потенциал поверхности снижения вследствие недостатка потенциалобразующих ионов и вследствие адсорбции противоположно заряженных ионов, наступает нейтрализационная коагуляция. Концентрационная коагуляция характерна для сильнозаряженных золей и суспензий она связана с сжатием диффузной части двойного слоя при увеличении ионной силы раствора. Критерии устойчивости сильнозаряженных золей при концентрационной коагуляции подчеркивает важное значение заряда коагулирующего иона:

ε3 (kT)5

γ= C A2 e6 z6 ,

где γ - порог коагуляции электролита, соответствующий исчезновению энергетического барьера, ммоль/л;

е - заряд электролита;

z - заряд коагулирующего иона;

А - константа Ван-дер-Ваальса-Гамакера; С - константа уравнения.

Можно выразить зависимость порога коагуляции от заряда противоиона:

k

γ = zв

это уравнение подтверждает известное эмпирическое правило Шульце-Гарди по которому коагулирующая сила иона возрастает с зарядом.

При коагуляции смесью электролитов наблюдается явление антагонизма, и синеризма. Для защиты гидрозолей и гидросуспензий от коагулирующего влияния электролитов применяют защитные вещества - высокомолекулярные соединения и моющие вещества, растворимые в воде (белки, эфиры, целлюлоза, мыла, декстрин, крахмал). Как показал Н.П.Песков, в основе защитного действия лежит адсорбция больших дифильных, асимметричных молекул защитного вещества поверхностно-коллоидных частиц. В результате частицы помимо ионной оболочки будет дополнительно защищена слоем адсорбционных моле-

кул.

В золях, суспензиях, эмульсиях и растворах полимеров и мыл возможен процесс структурообразования, который изменяет вязкость и текучесть системы. Структурообразование, т.е. возникновение внутри дисперсной системы механически прочной сетки, построенной из отдельных ориентированных частиц, - это прежде всего результат неодинаковой лиофильности поверхности частиц, лиофобно-лиофильная мозаичность поверхности частиц обуславливает образование структур при слипании частиц. В пространстве между частицами находятся прослойки дисперсионной среды. При достаточно большой концентрации золя или суспензии может произойти полная потеря текучести. В коллоидных системах частицы, образующие структуру, связаны между собой молекулярными силами, поэтому полученные структуры часто малопрочны и сравнительно легко разрушаются. Для многих структурированных систем характерно явление тиксотропии. Она заключается в том, что структура, разрушаясь при энергичном механическом воздействии (взбалтывание, перемешивание), вновь восстанавливается во времени.

Тиксотропны глины, масляные краски, студни.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]