Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-104 Ответы на вопросы Гигиена.docx
Скачиваний:
66
Добавлен:
02.05.2015
Размер:
442.54 Кб
Скачать

1

Гигиена (от греч. hygieinós— здоровый), наука о здоровье, отрасль медицины, изучающая влияние разнообразных факторов внешней среды (природных и бытовых условий, общественных производственных отношений) на здоровье человека, его работоспособность и продолжительность жизни.

Основные задачи гигиены

-изучение влияния внешней среды на состояние здоровья и работоспособность людей. При этом под внешней средой следует понимать весь сложный комплекс природных, социальных, бытовых, производственных и иных факторов.

-научное обоснование и разработка гигиенических норм, правил и мероприятий по оздоровлению внешней среды и устранению вредно действующих факторов;

-научное обоснование и разработка гигиенических нормативов, правил и мероприятий по повышению сопротивляемости организма к возможным вредным влияниям окружающей среды в целях улучшения здоровья и физического развития, повышения работоспособности. Этому способствуют рациональное питание, физические упражнения, закаливание, правильно организованный режим труда и отдыха, соблюдение правил личной гигиены.

В рамках гигиены выделяют следующие основные разделы:

Гигиена окружающей среды - изучающая воздействие природных факторов - атмосферного воздуха, солнечного излучения и т.п.

Гигиена труда - изучающая воздействие производственной среды и факторов производственного процесса на человека.

Коммунальная гигиена - в рамках которой разрабатываются требования к градостроительству, жилищу, водоснабжению и т.п.

Гигиена питания - изучающая значение и воздействие пищи, разрабатывающая мероприятия по оптимизации и обеспечении безопасности питания (часто этот раздел путают с диетологией).

Гигиена детей и подростков - изучающая комплексное воздействие факторов на растущий организм.

Социальная гигиена и организация здравоохранения.

А также некоторые узкие разделы: радиационная гигиена, промышленная токсикология, военная гигиена (направлена на сохранение и повышение боеспособности личного состава), личная гигиена (как элемент здорового образа жизни и профилактической медицины) и др.

В зависимости от решаемых задач по изучению влияния на организм различных факторов в гигиене используются следующие методы:

- Экспериментальные методы позволяют в модельных условиях изучать влияние отдельных факторов или их комплекса на организм человека и животных. С помощью этого метода дается оценка различным устройствам, токсическим веществам, новым видам одежды и обуви и др. Этот метод успешно применяется в условиях моделирования разнообразных условий внешней среды на различных промышленных, коммунальных и спортивных объектах.

- Бактериологические методы позволяют определить бактериальную загрязненность воздуха, воды, пищи, одежды и обуви, спортивного инвентаря и др.

- Физиолого-гигиеничекие методы позволяют определить различные изменения в функциях ЦНС, сердечно-сосудистой, дыхательной, мышечной и других системах организма при различных условиях жизни и труда. При спортивной деятельности и т.п.

- Клинические методы дают информацию об изменениях состояния здоровья и работоспособности при воздействии различных факторов, в том числе профессиональных.

Гигиена широко использует также методы смежных дисциплин: физиологии, биохимии, бактериологии, токсикологии, физики, химии и др.

2.

Гигиена — сравнительно молодая наука, хотя ее истоки уходят в глубокую старину. Согласно историческим документам, уже у древних народов Индии, Китая, Египта существовали простейшие правила выбора источников водоснабжения, питания, ухода за телом, предупреждения инфекционных болезней и т. д. Наибольшего расцвета гигиена (хотя и не как специальная наука, а как набор практических рекомендаций) достигла в Древнем Риме, который среди прочего прославился своим водопроводом и общественными банями. Уже за 600—500 лет до н. э. в Риме было свыше 30 отдельных водопроводов.

История средних веков оказалась историей огромных эпидемий страшных болезней (чума, черная оспа, сифилис и др.), приведших к гибели многие миллионы людей, к вымиранию населения целых областей. Врачи тщетно искали “жизненный эликсир” как универсальное средство от всех болезней, прочие граждане усиленно молились, совершали паломничества к “святым местам”. И все это происходило на фоне отсутствия даже следов санитарной культуры и каких-либо санитарно-технических сооружений. Достаточно сказать, что в средневековых городах нечистоты выливались прямо на улицу, водоснабжения и канализации не было.

В XVI—XVII вв. начали очищать города от мусора и нечистот, затем стали строить тротуары, освещать улицы и т. д. В это же время стали появляться и научные сочинения гигиенического характера, хотя первые трактаты по гигиене создал еще великий ученый и врач Древней Греции Гиппократ (460—377 до н. э.) (“О здоровом образе жизни”, “О водах, воздухе и местностях” и др.). В них он отрицал сверхъестественные причины или божественное происхождение болезней, правильно оценивал влияние на здоровье человека таких факторов, как климат, погода, состояние почвы, воды, особенности питания, образа жизни и привычек, избыток или недостаток физических упражнений и т. д.

Сначала гигиена была наблюдательной и описательной наукой. Затем в ней стали применяться методы математической статистики. И, наконец, она превратилась в экспериментальную науку. Этому способствовало использование гигиеной методов других наук, в первую очередь физики, химии, микробиологии, эпидемиологии, токсикологии, радиологии.

Более интенсивно гигиена стала развиваться в ХVII-ХVIII и особенно в XIX вв. Поводом к этому послужили рост крупных промышленных городов и сосредоточение на их территории значительного числа рабочих, не обеспеченных материально, живущих в антисанитарных условиях, вследствие чего намного возросла опасность эпидемических заболеваний.

Огромную роль в развитии гигиенической науки сыграл немецкий ученый Макс Петтенкофер (1818-1901), который по праву считается ее основоположником. Он ввел в гигиену экспериментальный метод, благодаря чему она превратилась в точную науку, располагающую объективными способами исследования. Уделяя окружающей среде первостепенное значение в этиологии заболеваний, Петтенкофер наметил основные пути ее оздоровления. Он обращал также большое внимание на личную гигиену.

Крупными учеными-гигиенистами были основоположники гигиены в России А. П. Доброславин (1842—1889) и Ф. Ф. Эрисман (1842—1915).

А. П. Доброславин организовал при Военно-медицинской академии в Петербурге впервые в России кафедру гигиены и экспериментальную гигиеническую лабораторию, был редактором первого гигиенического журнала “Здоровье” и организатором “Общества охранения народного здравия”.

Ф. Ф. Эрисман организовал кафедру гигиены при Московском университете и при ней городскую санитарную станцию (на ее базе впоследствии возник Научно-исследовательский институт гигиены, носящий его имя). Опубликовал первое в России «Руководство к гигиене». В 1878 г. руководил дезинфекционными работами в русской армии в Болгарии во время русско-турецкой войны 1877-1878 гг. Разработал ряд санитарных вопросов строительства водопровода, канализации и полей орошения в Москве и проблем школьной гигиены (влияние занятий и освещённости классов на зрение учащихся, рациональная конструкция классной мебели и др.). В России создал школу гигиенистов.

Хлопин---- Значительный вклад в становление и развитие отечественной гигиены внес известный ученый-гигиенист Г.В. Хлопин.

Г.В. Хлопин, окончивший физико-математический факультет Петербургского (1886) и медицинский факультет Московского (1893) университетов, ученик Ф.Ф. Эрисмана, возглавлял (1918- 1929) кафедры общей и военной гигиены Военно-медицинской академии. Он автор учебников и руководств по гигиене «Основы гигиены», «Сокращенный курс общей гигиены», «Практические

пособия по методам санитарных исследований», «Основы преподавательского дела» и др., редактор журнала «Гигиена и санитария». Большое внимание Г.В. Хлопин уделял разработке методов санитарно-химических исследований, вопросам гигиены водоснабжения, охраны чистоты водоемов, жилища, гигиены питания и др.

3.

1. Профилактика - основополагающий принцип охраны здоровья населения. Три уровня профилактики: первичная, вторичная и третичная.

ПРОФИЛАКТИКА - комплекс мероприятий, направленных на обеспечение высокого уровня здоровья людей, их творческого долголетия, устранение причин заболеваний, улучшение условий труда, быта и отдыха населения, охрану окружающей среды. Состояние профилактики в стране отражает характер социально-экономических, научно-технических и политических условий жизни общества.

В зависимости от состояния здоровья, наличия факторов риска заболевания или выраженной патологии можно рассмотреть три вида профилактики.

Первичная профилактика — система мер предупреждения возникновения и воздействия факторов риска развития заболеваний (вакцинация, рациональный режим труда и отдыха, рациональное качественное питание, физическая активность, охрана окружающей среды и т. д.). Ряд мероприятий первичной профилактики может осуществляться в масштабах государства.

Вторичная профилактика — комплекс мероприятий, направленных на устранение выраженных факторов риска, которые при определенных условиях (стресс, ослабление иммунитета, чрезмерные нагрузки на любые другие функциональные системы организма) могут привести к возникновению, обострению и рецидиву заболевания. Наиболее эффективным методом вторичной профилактики является диспансеризация как комплексный метод раннего выявления заболеваний, динамического наблюдения, направленного лечения, рационального последовательного оздоровления.

Некоторые специалисты предлагают термин третичная профилактика как комплекс мероприятий, по реабилитации больных, утративших возможность полноценной жизнедеятельности. Третичная профилактика имеет целью социальную (формирование уверенности в собственной социальной пригодности), трудовую (возможность восстановления трудовых навыков), психологическую (восстановление поведенческой активности

4.

5.

Всемирной ассамблеей здравоохранения в мае 1998 г. для стран, входящих в ВОЗ, утверждена Всемирная Декларация по охране здоровья, в которой отмечено, что улучшение здоровья и материального состояния населения является конечной целью социального и экономического развития. Значение проблемы здоровья особенно возросло в последнее время, так как состояние здоровья населения существенно изменилось, возникли новые закономерности распространенности и характера патологии человека, иначе протекают демографические процессы. Указанные изменения в состоянии здоровья населения можно обобщенно охарактеризовать так: • ускорился темп динамики всех показателей, характеризующих здоровье (заболеваемость, инвалидность, смертность, физическое развитие); • сложился новый неэпидемический тип патологии; • произошли характерные демографические изменения (старение, урбанизация, сдвиг в структуре смертности); • определился ряд заболеваний, частота которых резко возросла в последнее время (болезни органов кровообращения, хронические неспецифические заболевания органов дыхания, несчастные случаи, отравление, травмы и пр.

); • выделилась группа заболеваний, которые ранее редко встречались: эндокринные, аллергические, врожденные пороки, болезни иммунной системы и др.; • выросла заболеваемость некоторыми инфекционными болезнями: туберкулезом, СПИДом, корью, дифтерией, вирусным гепатитом В, герпесом, аденовирусными болезнями и др.; • сложилась тенденция множественной патологии у одного больного; • определилась многофакторность влияния и необходимость системного подхода к профилактике. Все изложенное выше определяет большую актуальность проблемы здоровья на современном этапе. Проведение широких профилактических мероприятий по укреплению здоровья людей предопределяет наличие четкого определения понятия здоровья.

Не имея четких границ в определении понятия здоровья, практически невозможно изучить влияние на него различных факторов окружающей среды, классифицировать население по группам здоровья, изучить эффективность проведенных гигиенических мероприятий.

6.

Здоровье - это первая и важнейшая потребность человека, определяющая способность его к труду и обеспечивающая гармоническое развитие личности. Оно является важнейшей предпосылкой к познанию окружающего мира, к самоутверждению и счастью человека. Активная долгая жизнь - это важное слагаемое человеческого фактора.

Здоровый образ жизни (ЗОЖ) - это образ жизни, основанный на принципах нравственности, рационально организованный, активный, трудовой, закаливающий и, в то же время, защищающий от неблагоприятных воздействий окружающей среды, позволяющий до глубокой старости сохранять нравственное, психическое и физическое здоровье.

По определению Всемирной организации здравоохранения (B03) "здоровье - это состояние физического, духовного и социального благополучия, а не только отсутствие болезней и физических дефектов".

Вообще, можно говорить о трех видах здоровья: о здоровье физическом, психическом и нравственном (социальном):

· Физическое здоровье - это естественное состояние организма, обусловленное нормальным функционированием всех его органов и систем. Если хорошо работают все органы и системы, то и весь организм человека (система саморегулирующаяся) правильно функционирует и развивается.

· Психическое здоровье зависит от состояния головного мозга, оно характеризуется уровнем и качеством мышления, развитием внимания и памяти, степенью эмоциональной устойчивости, развитием волевых качеств.

· Нравственное здоровье определяется теми моральными принципами, которые являются основой социальной жизни человека, т.е. жизни в определенном человеческом обществе. Отличительными признаками нравственного здоровья человека являются, прежде всего, сознательное отношение к труду, овладение сокровищами культуры, активное неприятие нравов и привычек, противоречащих нормальному образу жизни. Физически и психически здоровый человек может быть нравственным уродом, если он пренебрегает нормами морали. Поэтому социальное здоровье считается высшей мерой человеческого здоровья. Нравственно здоровым людям присущ ряд общечеловеческих качеств, которые и делают их настоящими гражданами.

Здоровый и духовно развитый человек счастлив - он отлично себя чувствует, получает удовлетворение от своей работы, стремится к самоусовершенствованию, достигая неувядающей молодости духа и внутренней красоты.

Целостность человеческой личности проявляется, прежде всего, во взаимосвязи и взаимодействии психических и физических сил организма. Гармония психофизических сил организма повышает резервы здоровья, создает условия для творческого самовыражения в различных областях нашей жизни

В понятие здоровья в настоящее время вкладывается более широкий смысл, чем отсутствие болезней, оно включает в себя деятельностные возможности человека, которые позволяют ему улучшить свою жизнь, сделать ее более благополучной, достичь более высокой степени самореализации.

Отметим, что благополучие касается всех сторон жизни человека, а не только его физического состояния. Духовное благополучие соотносится с разумом человека, его интеллектом, эмоциями. Социальное благополучие отражает возможности человека жить безопасно в реальной окружающей среде (природной, техногенной, социальной). Физическое благополучие связано с физическими возможностями человека, с совершенством его тела и продолжительностью жизни.

Таким образом, благополучие человека является определяющим понятием его здоровья. Благополучие человека зависит от его физического, духовного и социального здоровья. Нельзя получить цельного представления о здоровье человека, не принимая во внимание степень влияния на него психических, биологических и социальных процессов, происходящих в повседневной жизни, и его способности приспосабливаться к ним. Ни одна болезнь не ограничена только телом или только психикой. Человек в отличие от остального животного мира наделен творческим разумом и является существом социальным, а значит, обладает биологическим (физическим), духовным и социальным здоровьем. При этом основой здоровья все больше выступает духовная его составляющая.

7.

Экологический риск — это оценка на всех уровнях — от  точечного до глобального — вероятности появления негативных изменений в окружающей природной среде, вызванных антропогенным или иным воздействием. Под экологическим риском понимают также вероятностную меру опасности причине­ния вреда окружающей природной среде в виде возможных по­терь за определенное время.

Оценка уровня экологического риска является необходимым показателем, используемым при оценке качества окружающей природной среды. Государственная экологическая экспертиза при утверждении технико-экономического обоснования проек­тов, размещения объектов и т. д., проверяет обеспечение в них допустимого экологического риска и его гарантии.

При оценке допустимого экологического риска антропогенного воздействия учитываются следующие правила (Петров 1995): 1) неизбежность потерь в природной среде; 2) минималь-ность потерь в природной среде; 3) реальная возможность вос­становления потерь в природной среде; 4) отсутствие вреда здо­ровью человека и необратимость изменений в природной сре­де; 5) соразмерность экологического вреда и экономического эффекта.

При оценке риска стихийных бедствий учитывают возмож­ное число погибших и пострадавших людей, а также экономи­ческие потери. Вначале собирают фактические данные о при­родных опасностях на изучаемой территории, далее определя­ют их самые опасные типы и частоту проявления, затем со­ставляют карту (или серию карт), отражающую вероятность раз­вития опасных процессов. Эти карты, где указаны территории различной степени риска, помогают эффективно решать вопро­сы управления риском и планирования социально-экономиче­ского развития территории.

Превышение пределов допустимого экологического риска должно пресекаться по закону. С этой целью ограничивают или приостанавливают деятельность экологически опасных произ­водств, а на стадиях принятия решений допустимый экологи­ческий риск оценивают с помощью государственной экологи­ческой экспертизы и в случае его превышения представленные для согласования материалы отклоняют. Фактор экологического риска существует на любых производствах, независимо от их местоположения. Однако существуют регионы, где, в сравне­нии с более экологически благополучными районами вероят­ность проявления негативных изменений в экосистемах и ис­тощение природно-ресурсного потенциала во много раз выше.

Эти регионы получили название зон повышенного эколо­гического риска. В них выделяют зоны:

1) хро­нического загрязнения окружающей среды;

2) повышенной экологической опасности;

3) чрезвычайной экологической ситуа­ции ;

4) экологического бедствия.

К зонам хронического загрязнения окружающей природной среды и повышенном экологической опасности относятся территории регионов, городов,

районов с устойчивым повышенным уровнем антропогенной нагрузки, снижением плодородия почв, дефицитом пресной воды, повышенным уровнем заболеваемости населения.

К зонам чрезвычайной экологической ситуации относят территории, на которых в результате воздействия негативных антропогенных факторов происходят устойчивые отрицательные изменения ок­ружающей природной среды, угрожающие здоровью населе­ния, состоянию естественных экосистем, генофондам растений и животных. В России к таким зонам относятся районы Север­ного Прикаспия, Байкала, Кольского полуострова, рекреаци­онные зоны Черного и Азовского морей, промзона Урала, неф­тепромысловые районы Западной Сибири и др.

Зоной экологического бедствия, указами президента или по­становлениями Правительства России, на основе государствен­ной экологической экспертизы, объявляется часть территории Российской Федерации, на которой произошли глубокие необ­ратимые изменения окружающей среды, повлекшие за собой существенное ухудшение здоровья населения, разрушение ес­тественных экосистем, деградацию флоры и фауны. Прежде всего это зона влияния аварии на Чернобыльской АЭС, а так­же Кузбасс.

Всего на территории Российской Федерации к началу 1997 г. зарегистрировано более 400 регионов и пунктов общей площа­дью около 2 млн. км2 (12% территории России) с признаками зон чрезвычайной экологической ситуации и экологического бедствия. На их территории проживает около 35 млн. человек.

№8

Здоровый образ жизни (ЗОЖ) - термин, который применяется все чаше. Самое простое определение ЗОЖ — все то в образе жизни, что благотворно влияет на здоровье. Следовательно, в понятие ЗОЖ входят все положительные стороны деятельности людей: удовлетворенность трудом, активная жизненная позиция, социальный оптимизм, высокая физическая активность, устро-енность быта, отсутствие вредных привычек, высокая медицинская активность и т. д.

Формирование установки на здоровый образ жизни является важнейшей задачей государства, так как образ жизни — определяющий фактор здоровья.

Формирование ЗОЖ является также задачей органов здравоохранения, социальной защиты, образования. На формирование ЗОЖ направлены рекомендации ВОЗ:

питание с малым содержанием жиров животного происхождения;

сокращение количества потребляемой соли;

сокращение потребления алкогольных напитков;

поддержание нормальной массы тела;

регулярные физические упражнения;

снижение уровня стрессов и т. д.

Формирование установки на ЗОЖ лежит в основе любой профилактической деятельности, многочисленных программ, направленных на повышение здоровья общества. Пропаганда ЗОЖ является важнейшей функцией и задачей всех органов здравоохранения (особенно учреждений первичной медико-санитарной помощи), центров санитарного просвещения, учреждений образования, органов социальной защиты и т. д.

Установка на ЗОЖ должна формироваться по следующим направлениям: 1) усиление и создание положительного в образе жизни; 2) преодоление, уменьшение факторов риска.

Изучение и формирование общественного мнения относительно оценки собственного здоровья — одна из трудных задач формирования установки на ЗОЖ. Наряду с органами здравоохранения большая роль в этом принадлежит СМИ. Необходимо понимание того, что здоровье населения обеспечивается не только ответственностью государства и общества, но и ответственностью каждого из нас за свое здоровье и здоровье всех.

Здоровый образ жизни базируется на научно-обоснованных санитарно-гигиенических нормативах, направленных на укрепление здоровья: рациональное питание; физическая активность; закаливание; отсутствие вредных привычек; умение выходить из стрессовых состояний (например, владение методиками аутотренинга); высокая медицинская активность (своевременность прохождения медосмотров, своевременность обращения за медицинской помощью в случае заболевания, активное участие в диспансеризации); умение оказать первую помощь при внезапных заболевания, травмах и т. д.

Основы формирования здорового образа жизни

У каждого человека должна быть своя система здоровья как совокупность обстоятельств образа жизни, которые он реализует.

Отсутствие своей системы здоровья рано или поздно приведет человека к болезни и не даст ему возможности реализовать заложенные в него природой задатки.

Человек столь совершенен, что не только поддержать необходимый уровень здоровья, но и вернуться в него из болезни можно практически из любого состояния; но с прогрессированием болезни и с возрастом это требует все больших усилий. Как правило, человек прибегает к этим усилиям, если у него есть жизненно важная цель, мотивация, которые у каждого человека свои.

Основными особенностями программы здоровья должны быть:

добровольность;

затрата некоторых физических и других сил;

ориентация на постоянное повышение своих физических, психических и других возможностей.

Создание своей системы здорового образа жизни представляет собой исключительно длительный процесс и может продолжаться всю жизнь.

Обратная связь от наступающих в организме в результате следования здоровому образу жизни изменений срабатывает не сразу, положительный эффект перехода на рациональный образ жизни иногда отсрочен на годы. Вот почему, к сожалению, довольно часто люди лишь «пробуют» сам переход, но, не получив быстрого результата, возвращаются к прежнему образу жизни. В этом нет ничего удивительного, так как здоровый образ жизни предполагает, с одной стороны, отказ от многих ставших привычными приятных условий жизнедеятельности (переедание, комфорт, алкоголь и др.), а с другой — постоянные и регулярные тяжелые для неадаптированного к ним человека нагрузки и строгую регламентацию образа жизни. В первый период перехода к здоровому образу жизни особенно важно поддержать человека в его стремлении, обеспечить его необходимыми консультациями (так как в этот период он постоянно испытывает дефицит знаний в различных аспектах обеспечения здорового образа жизни), указывать на положительные изменения в состоянии его здоровья, в функциональных показателях и т.п.

Понятно, что для выработки «своей» системы человек перепробует различные средства и системы, проанализирует их приемлемость для него и эффективность, отберет лучшее.

В реализации программы здорового образа жизни, в организации перехода к нему в зависимости от индивидуальных особенностей человек может выбрать различные варианты.

Для тех, кто любит соблюдать четкий жизненный график — это жесткая последовательность действий, расписанная досконально но мероприятиям и времени. Поэтому все действия, направленные на обеспечение здоровья, — физические упражнения, гигиенические процедуры, время приема пищи, отдых и т.д. — жестко вписываются в режим дня с точным указанием времени.

Для привыкших ставить перед собой конкретные цели и добиваться их — четкое разделение по этапам перехода с планированием каждого этапа, его промежуточных и конечных целей. В этом случае появляется технология внедрения программы в жизнь: с чего и когда начать, как организовать питание, движение и т.д. Поэтапное внедрение программы позволяет уточнить цели и задачи каждого этапа, его длительность в соответствии с состоянием своего здоровья, формы контроля, конечный для этапа результат и пр. Выполнение поставленных на этап задач позволяет перейти к следующему этапу. То есть этот вариант не ставит жестких условий на каждый данный период времени, однако позволяет целеустремленно продвигаться к переходу к здоровому образу жизни.

Личная гигиена является системообразующим элементом формирования и обеспечения здорового образа жизни (ЗОЖ)каждого человека. Это раздел гигиены, изучающий и разрабатывающий нормы и правила (принципы) предупреждения заболеваний, сохранения и укрепления здоровья на индивидуальном уровне путем соблюдения гигиенических требований в повседневной жизни и деятельности. Личная гигиена не только составляет основу ЗОЖ, но и делает эффективными первичную и вторичную профилактику разных заболеваний.

При таком определении личную гигиену можно рассматривать и как отрасль определенных знаний, и как предмет изучения. Довольно распространенным является и другое представление о личной гигиене - как о сложившемсястереотипе поведения человека, характеризующемся определенными действиями и мерами, направленными на сохранение и укрепление его здоровья. В любом случае личная гигиена связана с общественной гигиеной.

Личная гигиена зародилась раньше общественной. Опасение за личное благополучие, а его важнейшим составным элементом является собственное здоровье, сформировалось раньше заботы о здоровье общества. Для понимания необходимости заботы о здоровье общества требуется определенный уровень социально-экономического развития и общественного сознания. Поэтому личная гигиена длительное время оставалась основным направлением гигиены вообще. 

№9

Эколо́гия (от др.-греч. οἶκος — обиталище, жилище, дом, имущество и λόγος — понятие, учение, наука) — наука о взаимодействиях живых организмов и их сообществ между собой и с окружающей средой. Термин впервые предложил немецкий биолог Эрнст Геккель в 1866 году в книге «Общая морфология организмов»

Медицинская экология раздел экологии человека и направление в современной профилактической медицине, анализирующийсвязи и зависимость общественного здоровья и его нарушений от факторов окружающей природной,социальной и техногенной среды.

Начиная с середины ХХ  в. в связи с резким ухудшением состояния окружающей среды в результатетехногенной деятельности обострился интерес к экологии и одновременно возникло ее более широкоетолкование как науки о взаимодействии человеческого общества с природной средой и экологическихпоследствий этого взаимодействия. Такое переосмысление экологии было зафиксировано итерминологически  — появилось понятие «социальная экология», подчеркивающее, что речь идет не обиологическом явлении, а о социальном, имеющем в том числе и биологические последствия. Процесс«социализации» экологии не обошел стороной как медицину, так и комплексный подход к изучениючеловека. Появился целый ряд научных направлений, в которых использованы идеи экологии озакономерностях взаимодействия между объектами изучения (человеческими общностями, возбудителямиболезней, хранителями и переносчиками зооантропонозов и т.д.)  со средой их обитания.

Экологическое здоровье это признание нашей собственной ответственности за качество воздуха, воды и земли, которая нас окружает. Способность оказывать положительное влияние на качество окружающей нас среды, будь то наши дома, наши города или наша планета, вносит свой вклад в наше экологическое оздоровление.

Мы не можем думать об экологическом здоровье как части общего плана оздоровления, но наша окружающая среда и, то, как мы чувствуем себя в ней, имеет огромное воздействие на нас в целом.

№ 10.

Химические загрязнители биосферы

Сегодня, как никогда, перед человечеством стоит вопрос о необходимости изменения своего отношения к природе и обеспечения соответствующего воспитания и образования нового поколения. Основой как национального, так и мирового развития общества должна стать гармония человека и природы. Каждый человек должен понимать, что только в гармонии с природой возможно его существование на планете Земля.

Человечество подошло к порогу, за которым нужно и новая нравственность, и новые знания, новый менталитет, новая система ценностей. Безусловно, их нужно создавать и воспитывать с детства. С детства надо учиться жить в согласии с природой, её законами и принципами [2].

В результате развития промышленности, техники и транспорта загрязнение биосферы достигло таких масштабов, что они требуют принятия мер противодействия загрязнению и проведение контроля за состоянием окружающей среды.

Первопричина возникновения проблемы химического загрязнения - обнаружение в экологических системах, прежде всего в биосфере, интенсивных и тревожных изменений, вызванных деятельностью человека, антропогенных изменений. Из большого числа вредных факторов отметим выброс в биосферу химически чуждых природе веществ, физически активных частиц, пыли, аэрозолей, повышение температуры биосферы, энергетическое загрязнение, физическое и биологическое воздействие на нее. Для оценки степени негативных изменений осуществляют экологический мониторинг - систему наблюдений и контроля за изменениями в составе и функциях различных экологических

Общие сведения о химических загрязнителях биосферы

В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов. Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 70% ежегодно добываемого твердого и жидкого топлива. Основными вредными примесями пирогенного происхождения являются следующие:

а) Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий.

б) Сернистый ангидрид. Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд.

в) Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

г) Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе вдругими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы.

д) Оксиды азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид.

е) Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторсодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом.

ж) Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлорсодержащие пестициды,

органические красители, гидролизный спирт, хлорную известь, соду.

Сложная экологическая ситуация в местах обитания человека требует особого внимания к разработке принципов импактного и регионального мониторинга. При постоянно изменяющейся структуре производства система мониторинга также должна стать гибкой, использующей перестаивающиеся программы и оптимальное соотношение передвижных и стационарных постов. Но важнее всего добиться того, чтобы стало возможным осуществление активного мониторинга. Созданная в стране система мониторинга сыграла свою положительную роль, и теперь от неё требуется большее, чем пассивное наблюдение, оценка и прогноз. Необходимо дополнить её системой принятия решений, т.е. экспертной компьютеризованной службой, которая не может существовать без создания единой геоинформационной системы, охватывающей всю страну.

Понятно, что решения, направленные на улучшение функционирование предприятий, должны приниматься на основании мониторинга источников и анализа ситуации в непосредственной близости к ним, т.е. в импактных зонах. Там и должно располагаться основное количество измерительной аппаратуры, причём основное внимание должно быть уделено методом быстрой регистрации загрязняющих веществ в пространстве и времени.

В системе сбора информации более существенная роль должна принадлежать станциям дистанционного наблюдения и мобильным лабораториям. Последние следует оснастить приборами для экспресс-анализа, средствами пробоотбора и консервации проб. Эти лаборатории могут сыграть важную роль в анализе послеаварийных ситуаций, изучении районов экологического бедствия. Мобильные лаборатории, оснащённые дистанционными приборами регистрации нормируемых примесей в воздухе над предприятиями, а также для дистанционного определения концентраций загрязняющих веществ над организованными источниками (в факелах труб), помогут стыковать данные мониторинга источников с мониторингом импактных зон.

Важно, чтобы информация, полученная с помощью систем экологического мониторинга, предоставлялась совместно с географической информацией и данным медицинского мониторинга. Это позволяет проследить за характером распределения загрязняющих веществ в пространстве и времени в связи с географическими и ландшафтными особенностями рассматриваемых участков Земли. Кроме того, подобный способ представления информации позволит решить основную задачу уменьшения негативного влияния загрязнения атмосферного воздуха на здоровье людей.

Наконец, информация о состоянии окружающей среды, наблюдаемых изменениях, тенденциях этих изменений, прогнозе вероятных ситуаций должна быть доступной для всех заинтересованных предприятий, организаций, органов управления, средств массовой информации и общественности. Пользователями информационной системы могут быть любые предприятия и организации на территории страны и за рубежом, работающие над проблемами антропогенного воздействия на среду, использования природных ресурсов, здоровья населения, образования в области охраны окружающей среды. Доступность достоверной информации будет способствовать экологическому образования населения, уменьшению количества ложных сенсационных сообщений в средствах массовой информации и привлечению заинтересованных организаций к широкому сотрудничеству.

№11

Экологически обусловленные нарушения в здоровье детей

Многообразный экопатогенный риск определяет и многовариантные нарушения в состоянии здоровья детей. Такие нарушения подтверждены эпидемиологическими исследованиями распространенности экопатологических эффектов на территориях разного экологического риска.

В экологически неблагополучных населенных пунктах в результате хронического влияния комплекса загрязнителей разной природы более часто регистрируют экологически спровоцированные нарушения здоровья детей:

снижение уровня, нарушение гармоничности физического и нервно-психического развития;

предболезненные (донозологические) симптомы повреждения различных органов и систем;

повышенный уровень общей и впервые выявленной заболеваемости;

увеличение числа хронических заболеваний;

появление длительно, тяжело и атипично протекающих заболеваний, с трудом поддающихся лечению традиционными методами;

увеличение числа злокачественных новообразований;

рост числа младенцев с врожденными пороками развития, а также детей с морфогенетическими стигмами эмбриогенеза;

Выраженное нейротропное действие на организм оказывает ртуть, что проявляется в виде астено-вегетативного синдрома, психических нарушений. Отравление органическими соединениями ртути (болезнь Мимамата) приводит к развитию энцефалопатии, мозжечковой атаксии, нарушению зрения и слуха.

Задержки физического и психического развития детей вплоть до кретинизма могут быть обусловлены дефицитом йода на геоаномальных природных территориях.

Предотвращение нарушений нервно-психического развития детей от экотоксикантов — задача государственной важности, она реализуется на основе специально разрабатываемых федеральных программ.

Помимо нарушений физического и психического развития у детей наблюдаются донозологические (предболезненные) симптомы и синдромы — обширный перечень признаков нарушения здоровья, которые трудно свести к специфическому воздействию конкретных поллютантов.

Многочисленные неспецифические проявления «нездоровья» у детей, возникающие более часто на территориях высокого экологического риска, по определению академика Ю. Е. Вельтишева. следует рассматривать как синдромы экологической дезадаптации и интоксикации:

синдром бронхиальной гиперреактивности — неспецифические реакции дыхательных путей на разного рода загрязнители (взвешенные вещества, сажа, оксиды азота, сера, углерод, асбест, формальдегид и пр.);

вторичные иммунодефициты, парааллергии;

синдром раздраженного кишечника.

Выявляемые у детей отклонения в состоянии здоровья — это чаще всего обратимые пограничные состояния, хотя у некоторых из них в силу индивидуальной гиперчувствительности к загрязнителям и наличия других факторов риска формируются хронические заболевания

№ 12.

Диоксины представляют собой группу химически связанных соединений, которые являются устойчивыми загрязнителями окружающей среды.

Диоксины присутствуют в окружающей среде повсюду в мире и накапливаются в пищевой цепи, в основном, в жировых тканях животных.

Более 90% воздействия диоксинов на людей происходит через пищевые продукты, главным образом через мясо и молочные продукты, рыбу и моллюски. Во многих странах действуют программы по осуществлению мониторинга за продовольственным снабжением.

Диоксинывысоко токсичны и могут вызывать проблемы в области репродуктивного здоровья и развития, поражения иммунной системы, гормональные нарушения и раковые заболевания.

В связи с тем, что диоксины присутствуют повсюду, все люди подвергаются фоновому воздействию, которое, как считается, не оказывает воздействия на здоровье людей. Тем не менее, из-за высоко токсичного потенциала необходимо предпринимать усилия по снижению нынешнего уровня фонового воздействия.

Предотвращение или снижение уровня воздействия на людей наилучшим образом достигается путем проведения мероприятий, ориентированных на источники, то есть путем осуществления строгого контроля за промышленными процессами для максимально возможного уменьшения образования диоксинов.

Диоксины являются загрязнителями окружающей среды. Они входят в состав "грязной дюжины" – группы опасных химических веществ, известных как стойкие органические загрязнители. Диоксины вызывают особое беспокойство в связи с их высоким токсическим потенциалом. Эксперименты показывают, что они воздействуют на целый ряд органов и систем.

Попав в организм человека, диоксины долгое время сохраняются в нем благодаря своей химической устойчивости и способности поглощаться жировыми тканями, в которых они затем откладываются. Период их полураспада в организме оценивается в 7-11 лет. В окружающей среде диоксины имеют тенденцию накапливаться в пищевой цепи. Концентрация диоксинов увеличивается по мере следования по пищевой цепи животного происхождения.

Химическое название диоксина – 2,3,7,8- тетрахлородибензо пара диоксин (ТХДД). Название "диоксины" часто используется для семейства структурно и химически связанных полихлорированныхдибензо-пара-диоксинов (ПХДД) иполихлорированныхдибензофуранов (ПХДФ). Некоторые диоксиноподобныеполихлорированныебифенилы (ПХБ) с похожими токсическими свойствами также входят в понятие "диоксины". Выявлено 419 типов относящихся к диоксинам соединений, но лишь 30 из них имеют значительную токсичность, а самыми токсичными являются ТХДД.

Источники диоксинового загрязнения

Диоксины образуются, главным образом, в результате промышленных процессов, но могут также образовываться и в результате естественных процессов, таких как извержения вулканов и лесные пожары. Диоксины являются побочными продуктами целого ряда производственных процессов, включая плавление, отбеливание целлюлозы с использованием хлора и производство некоторых гербицидов и пестицидов. Основными виновниками выбросов диоксинов в окружающую среду часто являются неконтролируемые мусоросжигательные установки (для твердых и больничных отходов) из-за неполного сжигания отходов. Существуют технологии, позволяющие осуществлять контролируемое сжигание отходов при низких выбросах.

Несмотря на локальное образование диоксинов, их распространение в окружающей среде носит глобальный характер. Диоксины можно обнаружить в любой части мира практически в любой среде. Самые высокие уровни этих соединений обнаруживаются в почвах, осадочных отложениях и пищевых продуктах, особенно в молочных продуктах, мясе, рыбе и моллюсках. Незначительные уровни обнаруживаются в растениях, воде и воздухе.

Во всем мире имеются обширные запасы отработанных промышленных масел на основе ПХБ, многие из которых содержат высокие уровни ПХДФ. Длительное хранение и ненадлежащая утилизация этих материалов может приводить к выбросам диоксина в окружающую среду и загрязнению пищевых продуктов людей и животных. Утилизировать отходы на основе ПХБ без загрязнения окружающей среды и популяций людей не просто. С такими материалами необходимо обращаться как с опасными отходами, и лучшим способом их утилизации является сжигание при высоких температурах в специально оборудованных местах.

Случаи диоксинового загрязнения

Многие страны контролируют пищевые продукты на наличие диоксинов. Это способствует раннему выявлению загрязнения и часто позволяет предотвратить крупномасштабные последствия. Во многих случаях загрязнение диоксинами происходит через загрязненный корм для животных, например случаи повышенного уровня содержания диоксинов в молоке или корме для животных были увязаны с гранулами глины, жиров или цитрусовых, используемых при изготовлении животных кормов.

Некоторые случаи диоксинового загрязнения были более значительными, с более широкими последствиями для многих стран.

В конце 2008 года Ирландия сняла с продажи многочисленные тонны свинины и продуктов из свинины, так как во взятых образцах свинины были обнаружены уровни диоксинов, превышающие безопасный уровень в 200 раз. Это привело к снятию с продажи в связи с химическим загрязнением одной из самых крупных партий пищевых продуктов. Оценки риска, проведенные Ирландией, показали, что проблемы для общественного здравоохранения нет. Было прослежено, что источником загрязнения были зараженные корма.

В 1999 году высокие уровни диоксинов были обнаружены в домашней птице и яйцах из Бельгии. Затем загрязненные диоксином продукты животного происхождения (домашняя птица, яйца, свинина) были обнаружены в некоторых других странах. Источником был корм для животных, загрязненный в результате незаконной утилизации отработанных промышленных масел на основе ПХБ.

В 1976 году на химическом заводе в Севесо, Италия, произошел выброс больших количеств диоксинов. Облако ядовитых химических веществ, включая 2,3,7,8- тетрахлородибензо-п-диоксин, или ТХДД, вырвалось в воздух и, в конечном итоге, заразило территорию в 15 квадратных километров, на которой проживало 37 000 человек. Экстенсивные исследования среди подвергшегося воздействию населения продолжаются для определения долговременных последствий этого инцидента на здоровье людей. Однако эти исследования затруднены в связи с отсутствием надлежащих оценок воздействия. Выявляется и исследуется самое незначительное возрастание заболеваемости определенными видами рака и воздействие на репродукцию. В настоящее время исследуются возможные последствия для детей лиц, подвергшихся воздействию.

Несмотря на то, что воздействию диоксинов могут подвергаться все страны, большинство сообщений о случаях загрязнения поступает из промышленно развитых стран, где для выявления проблем, связанных с диоксинами, имеются надлежащий мониторинг за загрязнением пищевых продуктов, более высокий уровень осведомленности об опасности и лучшие нормативные средства управления.

Было зарегистрировано также несколько случаев преднамеренного отравления людей. Самым значительным из них является случай отравления Виктора Ющенко, Президента Украины, лицо которого было обезображено хлоракне.

Последствия воздействия диоксинов на здоровье человека

Кратковременное воздействие на человека высоких уровней диоксинов может привести к патологическим изменениям кожи, таким как хлоракне и очаговое потемнение, а также к изменениям функции печени. Длительное воздействие приводит к поражениям иммунной системы, формирующейся нервной системы, эндокринной системы и репродуктивных функций. В результате хронического воздействия диоксинов у животных развиваются некоторые типы рака. В 1997 и 2012 годаху Международное агентство ВОЗ по исследованию рака (МАИР) сделало оценку ТХДД. На основе данных о животных и эпидемиологических данных о людях ТХДД был классифицирован МАИР как "известный человеческий канцероген". Однако ТХДД не оказывает воздействия на генетический материал, и существует такой уровень воздействия, ниже которого риск развития рака становится незначительным.

В связи с повсеместным распространением диоксинов все люди подвергаются его воздействию и имеют определенный уровень диоксинов в организме, который приводит к так называемой нагрузке на организм. Нынешнее обычное фоновое воздействие, в среднем, не имеет последствий для здоровья человека. Однако из-за высокого токсического потенциала этого класса соединений необходимо принимать меры для снижения уровня фонового воздействия.

Чувствительные подгруппы

Наиболее чувствителен к воздействию диоксина развивающийся плод. Новорожденный ребенок с быстро развивающимися системами органов может также быть более уязвимым перед определенными воздействиями. Некоторые люди или группы людей могут подвергаться воздействию более высоких уровней диоксинов из-за своего питания (например, жители некоторых частей мира, употребляющие в пищу много рыбы) или своего рода деятельности (например, работники целлюлозно-бумажной промышленности, мусоросжигательных заводов, свалок опасных отходов).

Профилактика и контроль воздействия диоксинов

Надлежащее сжигание загрязненных материалов является наилучшим доступным методом профилактики и контроля воздействия диоксинов. С помощью этого метода можно также уничтожать отработанные масла на основе ПХБ. В процессе сжигания требуются высокие температуры – свыше 850°С. Для уничтожения больших количеств загрязненных материалов необходимы еще более высокие температуры – 1000° и выше.

Наилучшим путем предотвращения или снижения уровня воздействия диоксинов на людей является принятие мер, ориентированных на источник, например, строгий контроль промышленных процессов для максимально возможного снижения уровня выделяемых диоксинов. Это является обязанностью национальных правительств. Комиссия "Кодекс Алиментариус" приняла в 2001 году Кодекс практики по мерам, ориентированным на источник, для уменьшения загрязнения пищевых продуктов химикатами (CAC/RCP 49-2001) и в 2006 году был принят Кодекс практики для предотвращения и снижения уровня загрязнения пищевых продуктов и кормов диоксинами и диоксиноподобными ПХБ (CAC/RCP 62-2006).

Более 90% случаев воздействия диоксинов на людей происходит через пищевые продукты, главным образом, через мясные и молочные продукты, рыбу и моллюсков. Следовательно, решающее значение имеет защита пищевых продуктов. Один из подходов, как уже указывалось выше, включает принятие ориентированных на источник мер для уменьшения выбросов диоксина. Необходимо не допускать вторичного загрязнения пищевых продуктов в пищевой цепи. Решающее значение для производства безопасных пищевых продуктов имеют надлежащие средства управления и практика во время первичного производства, обработки, распределения и продажи.

Как отмечается в приведенных выше примерах, первопричиной загрязнения пищевых продуктов часто является загрязненный корм для животных.

Необходимы системы мониторинга за загрязнением пищевых продуктов, не допускающие превышение приемлемых уровней. Национальные правительства должны контролировать безопасность пищевых продуктов и принимать меры для охраны здоровья населения. В случае подозрения на загрязнение страны должны иметь планы действий в чрезвычайных обстоятельствах для выявления, задержания и утилизации загрязненных кормов и пищевых продуктов. Население, подвергшееся воздействию, необходимо обследовать с точки зрения уровня воздействия (например, измерить уровень загрязнителей в крови или материнском молоке) и его последствий (например, установить клиническое наблюдение для выявления признаков плохого состояния здоровья).

Что должны делать потребители для снижения риска воздействия?

Удаление жира с мяса и потребление молочных продуктов с пониженным содержанием жира может уменьшить воздействие диоксиновых соединений. Сбалансированное питание (включающее фрукты, овощи и злаки в надлежащих количествах) также позволяет избежать чрезмерного воздействия диоксина из какого-либо одного источника. Эта долговременная стратегия направлена на уменьшение нагрузки на организм и имеет особую значимость для девушек и молодых женщин, так как способствует уменьшению воздействия на развивающийся плод, а затем на находящегося на грудном вскармливании ребенка.

13.

Поступление тяжелых металлов в окружающую среду связано с активной деятельностью человека и может быть условно подразделено на основные источники: промышленность, автотранспорт, котельные, мусоросжигающие установки и сельскохозяйственное производство.

К приоритетным отраслям промышленности, загрязняющим окружающую среду тяжелыми металлами, относятся: черная и цветная металлургия, добыча твердого и жидкого топлива, горнообогатительные комплексы, стекольная, керамическая, электротехническая и ряд других. Свинец, кроме производств, связанных с его получением, широко используется в производстве аккумуляторов, оболочек электрических кабелей, медицинской техники, хрусталя, оптического стекла, красок, многочисленных сплавов и т.д. Загрязнение почвы тяжелыми металлами происходит в сельскохозяйственном производстве при использовании удобрений и пестицидов.

В современных городах около 60% всех выбросов в атмосферу приходится на транспорт, что связано с резким увеличением количества личного и общественного автотранспорта.

Котельные на твердом и жидком топливе, работающие в городах для получения тепла и электроэнергии, – один из источников загрязнения среды не только тяжелыми металлами, но и различными оксидами.

Сжигание мусора сопровождается поступлением в биосферу целого «букета» тяжелых металлов: кадмий, ртуть, свинец, хром и другие.

Для крупных городов с многопрофильной промышленностью характерно присутствие в окружающей среде не отдельного загрязнителя, а ассоциации тяжелых металлов, способных оказывать комбинированное действие на организм, при котором может наблюдаться как суммирование эффектов, так и их потенцирование.

По материалам немецких исследователей в городском воздухе по сравнению с чистым воздухом горных районов содержится больше кадмия в 10 раз, мышьяка – в 7,5 раза, хрома – в 48 раз, меди – в 12,7 раза, ртути – в 5 раз, кобальта – в 46 раз и т.д.

Попавшие в окружающую среду соединения тяжелых металлов загрязняют атмосферный воздух, воду, почву. Каждая третья проба почвы на участках дошкольных учреждений на содержание солей тяжелых металлов не отвечает гигиеническим нормативам.

Соединения тяжелых металлов попадают в водоемы, растения и организмы животных, населяющих данную местность. Миграция металлов в биосфере позволяет объяснить пути поступления их в организм человека.

Соединения тяжелых металлов поступают в организм преимущественно через желудочно-кишечный тракт с пищевыми продуктами, водой, медикаментами, в меньшей степени – через органы дыхания.

Свинец – вещество первого класса опасности, оказывает политропное действие на организм. До 90% свинца аккумулируется в костях. Если воздействию свинца подвергаются маленькие дети, то критическим органом может быть мозг, в то время как у взрослых – кроветворная ткань или почки. Действие на организм зависит от концентрации загрязнителя в окружающей среде и соответствующего содержания его в крови (табл. 4.3).

Таблица 4.3

Возможные неблагоприятные эффекты у детей в зависимости от уровней свинца в атмосферном воздухе и соответствующего его содержания в крови (РЬ-КГ)*

Уровень свинца в кратности превышения ПДК

Pb-K, мкг/дцл

Потенциальный эффект

Статус организма

4-6

Напряжение адаптации

2-5

10-12

Ингибирование дегидро-тазы (цитоплазматической) дельтааминолевулиновой кислоты (ДАЛК.)

Перенапряжение адаптации

10-16

15-20

Повышение протопорфирина в эритроцитах; электрофизиологические изменения в ЦНС

Срыв адаптации

20-30

25-30

Повышение ДАЛК в моче, уменьшение синтеза гемоглобина, повышение копропорфирина

Явная патология

Нарушенная проводимость по нервному волокну, периферическая нервная дисфункция

-«-

Выраженная анемия, ретикулоцитоз

-«-

>100

>80

Энцефалопатия

-«-

 

При свинцовом токсикозе поражаются органы кроветворения (анемия), нервная система (энцефалопатия и нейропатия), органы чувств, почки (нефропатия), пищеварительная и сердечно-сосудистая системы. Наиболее восприимчива к свинцу гематопоэтическая система, особенно у детей. Накоплен обширный материал о влиянии свинца на нейропсихическое развитие детей.

Дети 5-12 лет с умеренно повышенным уровнем свинца в крови имеют сниженную память, умственную работоспособность, двигательную активность по сравнению с детьми контрольной группы. Хроническое воздействие свинца на развивающийся организм может быть причиной эмоционально-поведенческих нарушений. Свинец, попадая в организм, снижает активность гормонов, что, в конечном счете, сказывается на физическом развитии детей.

Установлено повреждающее действие свинца на зоны мозга, отвечающие за зрение. Американские исследователи обнаружили линейные зависимости в отставании длины и массы тела детей от уровня воздействия свинца на матерей в период беременности. Доказано также, что свинец снижает реакцию иммунной системы на чужеродные антигены.

Широкий спектр биологического действия у другого элемента первого класса опасности – кадмия. Кадмий обладает тератогенным действием, проникает через плацентарный барьер, нарушая поступление в плод целого ряда необходимых элементов. Свинец усиливает эмбриотоксическое действие кадмия, проявляя сум­мирующий эффект. Кадмий является ингибитором активности целого ряда ферментов, нарушая деятельность многих органов и систем, вызывая тяжелые морфологические и функциональные повреждения:

– ринит с потерей обоняния;

– нефропатия с типичной протеинурией;

– остеомаляция (болезнь «итай-итай»);

– нейротоксический синдром;

– обструктивные процессы в легких с развитием легочной недостаточности, есть данные о канцерогенном действии кадмия, в частности в развитии рака легкого.

Тяжелые патологические проявления массового хронического отравления кадмием зарегистрированы среди японского населения, употреблявшего рис, контаминированный кадмием, что описано японскими учеными как проявления экологически обусловленного заболевания «итай-итай» («больно-больно»).

Ртуть – токсичный тяжелый металл, который в природной среде присутствует в виде неорганической формы и метилированной ртути (метилртуть – органическая форма).

Источники ртути: добыча и выплавка ртутьсодержащей руды, извлечение золота из руд, производство хлора, винилхлорида, пестицидов и пр. Ртуть используется при производстве измерительных приборов, зеркал, люминисцентных ламп и пр.

Меркуриализм – хроническое отравление ртутью. Симптомы отравления ртутью и заболевания были зарегистрированы уже в конце 19 века как результат многократного использования ртутных составов:

- лекарства для лечения сифилиса

- ртутные зубные пломбы – амальгама, вызывающие акродинию (розовая болезнь)

- ртутный нитрат, использовавшийся для изготовления шляп, что приводило к нарушению нервной системы и психических функций у людей изготовлявших шляпы. Отсюда выражение – «глуп как шляпочник»

- ртутные испарения вызывали профессиональные отравления у ювелиров, жестянщиков, шахтеров, изготовителей зеркал, и пр.

- даже в начале 21 века были обнаружены растворы для контактных линз, содержащие этилртуть, которые у многих владельцев вызывали блефароконьюктивиты и прободения роговицы. Данные растворы были запрещены к использованию.

Ртуть является политропным ядом. Интоксикацию ртутью проявляется, прежде всего, изменениями в ЦНС: повышенная утомляемость, слабость, эмоциональная неустойчивость, головные боли и головокружения, тремор, ослабление памяти. При тяжелой интоксикации развивается ртутная энцефалопатия, множественные невралгии, полиневриты. Ртуть может накапливаться в почках, в результате чего развивается почечная недостаточность, так называемая, «сулемовая» почка. Ртуть проникает через плацентарный и гематоэнцефалический барьеры, повреждая организм ребенка в антенатальном и раннем постнатальном периоде развития.

Метилртуть– органическая форма ртути, которая образуется в водной среде из неорганической ртути и является более токсичной, чем ее неорганическая форма.

К середине 20-го столетия огромные ртутные отходы образовались повсеместно во всех странах мира. Эти отходы складировали вблизи предприятий, населенных пунктов, водоемов. В моря и океаны поступили огромные количества неорганической ртути. Она усваивалась морской биотой, где происходило метилирование, то есть образование метилртути. Последняя накапливалась в морских организмах, часто до очень высоких концентраций. Именно с этим связано появление новой «химической» экологической болезни, которая вошла в историю как классическая болезнь Минамата, описанная японскими учеными в середине 20-го столетия.

14.

Экологический кризис – изменения биосферы или ее частей на большом пространстве, которые сопровождаются изменением среды и систем в целом и переходом в новое качество. Биосфера неоднократно испытывала острые кризисные времена, обусловленные природными явлениями (например, в конце мелового периода за короткий промежуток времени вымерли пять отрядов рептилий – динозавры, птерозавры, ихтиозавры и др.).

Современный экологический кризис – результат нарушения системного равновесия между человеческим обществом и Природой.

Главная особенность современного экологического кризиса – его глобальный характер. Отметим его характерные признаки

· «Парниковый эффект»- процесс нарушения теплового баланса в биосфере (за век средняя температура возросла на 0,9 С0; уровень Мирового океана повысился на 15 см; ледники в горах уменьшились на 50-70 %, а средняя толщина льда в Северном ледовитом океане - на 1,2 м; тают ледники Антарктиды).

· Разрушение озонового слоя Земли (максимальное снижение концентрации озона над Антарктидой– в 3 раза).

· Активизация планетарных геологических сил (число естественных катастроф в мире возросло от 17 в год в 80-х до 30 – в 90-х годах; с 1960 по 2000 г. количество землетрясений в США возросло более чем в 10 раз; ущерб от климатических катастроф возрос за 30 лет более, чем в 3 раза и составил примерно 100 млрд.$ в год).

· Изменение ландшафтов (на планете осталось только около 28 % площади, не затронутой хозяйственной деятельностью; за 40 лет Африка потеряла 23 % леса, а Латинская Америка – 38 %; опустынивание, обезвоживание рек и морей; отравление и эррозия почвы).

· Загрязнение Мирового океана (ежегодно попадает 12 – 15 млн. т нефти в год, что приводит к суммарному загрязнению 150 млн. км2 из общей площади океана 361 млн. км2).

· Ускоряющееся исчезновение видов животных и растений (с 1970 по 2002 г. число видов живых организмов Мирового океана уменьшилось на 1/3, а в пресных водоёмах- на 55%; под угрозой уничтожения находится более 3/4 всех видов птиц и 1/4 млекопитающих).

Таким образом, в биосфере происходят существенные изменения стационарного состояния, нарушаются экосистемные связи. Анализ причин кризиса показывает, что они носят закономерный характер и не устранимы.

Выделим 3 группы причин кризиса: научно-технические (1), биолого-психологические (2) и социально-политические (3).

1.1. Ресурсный кризис. Недостаток продовольствия (в странах Африки ежегодно умирает от голода примерно 3,6 млн. детей); нехватка питьевой воды (по данным ООН в 2002 г. страдало 2,5 млрд. чел.); истощение минеральных ресурсов (за век их добыто в 10 раз больше, чем за всю историю; ощущается

нехватка платины, золота, цинка, свинца, а большинства ресурсов хватит на 50-150 лет; нефти в России осталось на 19- 35 лет).

1.2. Перепроизводство промышленных отходов. При добыче более 100 млрд. т ископаемых в год, в конечную продукцию перерабатывается примерно 5-10 %; отходов органического происхождения человечество производит в 2000 раз интенсивнее всей остальной биосферы [2]. Биосфера отравлена

антропогенными отходами.

1.3. Энерго-экологический кризис. Общее производство тепловой энергии (без транспорта, промышленности и т.д.) составляет 24 – 37 ТВт в год, а в процессе дыхания растений высвобождается и рассеивается 155 ТВт (биомасса планеты составляет 1,36*1015 кг, 1 кг биомассы растений в процессе дыхания выделяет 3.6 МДж/кг.год) . В соответствии с законами экологии превышение биологическими системами порога примерно 10 % изъятия продукта из системы верхнего уровня или выброса в неё такого же количества отходов

выводит её за границы возможности стабилизации и она разрушается . Человечество производит более 20 % энергии от всей биосферы, что привело к изменению процессов в ней. Не парниковые газы, а перепроизводство энергии - причина кризиса.

2.1. Рост народонаселения. Абсолютный прирост населения на Земле во второй половине

прошлого века превышал 1 % в год и численность достигла 6,2 млрд. Биологическая численность человеческого вида превышена примерно в 12000 раз, а социальная (обеспеченность жизненными ресурсами) – в 6. Действует экологическое правило: «на всех не хватит».

2.2. Неограниченный рост потребностей. Неограниченность запросов человека – особенность, отличающая его от других живых существ. Непрерывный рост психологических, биологически не обусловленных потребностей диктовал необходимость беспредельного развития промышленности, энергетики, привёл к исчерпанию ресурсов.

2.3. Технократический образ мышления. Человек убеждён в своём праве господина над Природой и в возможности решения социальных, экологических и экономических проблем за счёт разработки новых технологий.

3.1. Социальный фактор. Требования к окружающей среде, предъявляемые человеческими сообществами, государствами многократно выше, чем индивидуальные (затраты на оборону, космос, грандиозные стройки).

3.2. Масштабный фактор. Технические возможности сделали людей «новой геологической силой», а неразумные действия разрушают экосистемы.

3.3. Международная политика внесла определяющий вклад в темпы развития экологического кризиса. «Горячие» и «холодные» войны потребляли громадное количество ресурсов (ущерб от Второй мировой войны - 4 трлн.$, истрачен примерно 1 % ресурсов Земли), разрушали и уничтожали живое и

неживое, а современная международная экополитика отсутствует как действующая сила.

15.

Факторы окружающей среды (физические, химические, биологические, социальные) могут оказывать сложное влияние на состояние здоровья населения. Фактор окружающей среды может быть фактором риска, т.е таким компонентом этиологии, который хотя и важен в развитии заболевания, но сам по себе в отсутствии других условий не способен вызвать заболевание у конкретного человека. Риск вредного влияния на здоровье это вероятность развития нежелательных эффектов у населения при определенных уровнях и продолжительности действия факторов окружающей среды. С увеличением воздействия риск возрастает. Фактор окружающей среды может играть модифицирующую роль, т.е изменять клиническую картину и утяжелять течение хронического заболевания. Заболевания могут быть также обусловлены нарушением баланса между внутренней и внешней средой организма, что особенно характерно для эндемических заболеваний. Избыток или дефицит природных хим.в-в, нарушение их соотношения могут нарушать этот баланс. Вклад экологических факторов в риск развития нарушении состояния здоровья населения непостоянен и зависит от вида анализируемых нарушений, конкретных географических экономических и др.особенностей региона.

Выявление причинно-следственных связей между воздействием факторов окружающей среды и возможными изменениями состояния здоровья населения является одной из задач гигиенической диагностики. Гигиеническая диагностика-система мышления и действий, имеющих целью исследование состояния природной и социальной среды, здоровья человека и установление взаимосвязей между состоянием среды и здоровьем населения.

16.

1.Принцип примата медицинских показаний. При установлении критерия вредности любого фактора окружающей среды должны приниматься во внимание только особенности воздействия его на организм человека и санитарные условия его жизни. Никакие доводы об отсутствии в момент рассмотрения этого вопроса эффективных мер снижения выбросов, надежных методов очистки, индивидуальных средств защиты и т.д., не должны приниматься в учет и служить основанием для утверждения норматива более низкого качества. Этот же принцип предусматривает предварительное изучение любого фактора, прежде чем он будет внедрен в производство. Этот принцип закреплен в природоохранном законодательстве. Например, согласно ст.закона «Об охране атм.воздуха» в атмосферный воздух запрещен выброс хим. Веществ, не имеющих утвержденных ПДК или ОБУВ и методов их контроля.

2. Принцип дифференциации биологических ответов. Влияние вредного фактора на организм человека может быть различным. В зависимости от силы воздействия биологические ответы могут быть: 1) Смертность 2) заболеваемость 3) физиологические изменения 4) неспецифические сдвиги 5) накопление загрязняющих веществ в оранах и тканях.

Биологический ответ, кроме характера фактора, зависит и от состояния организма человека в момент воздействия (пола, возраста, состояния здоровья) Наиболее чувствительными являются дети и пожилые люди. Поэтому гигиенический норматив устанавливается в расчете на наиболее чувствительные группы населения и биологический ответ у них должен быть на уровне пятой группы ответов, т.е не превышать защитно-приспособительных решений.

3. Принцип разделения критериев для различных объектов окружающей среды. Гигиенические нормативы устанавливаются отдельно для воды, атм.воздуха и воздуха рабочей зоны, почвы и продуктов питания, биологических сред организма. Это связано с особенностями самих этих объектов, особенностями воздействия на организм, путями поступления и временем контакта с вредным фактором. Так для химического фактора это будет предельно допустимая концентрация, но отдельно для атм.воздуха и отдельно для воды водоемов. Для физ.факторов- предельно допустимая доза и предельно допустимый уровень воздействия.

4. Принцип учета всех возможных неблагоприятных воздействий. Для каждого фактора окружающей среды при определении его гигиенического норматива определяется перечень всех возможных неблагоприятных воздействий на среду и на организм человека. А каждому виду неблагоприятных воздействий соответствует определенный показатель вредности, величину которого необходимо установить в эксперименте. Экспериментально выбирается лимитирующий показатель вредности и по нему нормируется данное вещество.

5.Принцип пороговости является центральным принципом гигиенического нормирования. Он основан на учете того, что живой организм способен приспосабливаться к воздействию окружающей среды до определенных пределов. В случае превышения этих границ в организм происходит срыв приспособительных реакций и приспособительные процессы переходят в патологические, возникает болезнь. На основе этого могут быть определены максимально допустимые нагрузки всех действующих факторов на человеческую популяцию.

6.Принцип зависимости эффекта от концентрации (дозы) и времени. Для острых воздействий получаемый эффект зависит от концентраций, так как чем выше концентрация, тем резче выражены реакции организма. При хроническом воздействии проявление действия фактора требует кумуляции действующего начала, для чего необходимо определенное время.

7. Принцип лабораторного эксперимента заключается в том, что исследования по установлению порога действия вещества или фактора вредности производится обязательно в лабораторных условиях строго стандартными, унифицированными, сертифицированными, утвержденными Минздравом Российской Федерации, методиками.

8.Принцип агравитации вытекает из предшествующего принципа и обусловлен тем, что в лабораторных условиях трудно смоделировать процессы, которые бы полностью учитывали все естественные и искусственные факторы. Из всего многообразия факторов отбирают только те, которые играют решающую роль и моделируют такие условия эксперимента, которые способствуют максимальному проявлению именно этого решающего фактора.

9 Принцип относительности ПДК. Любой утвержденный гигиенический норматив не является абсолютной истиной. С появлением новых научных данных, полученных более чувствительными методами исследования, о снижении порога действия вредного вещества, ПДК может быть пересмотрена. Также получение новых данных о неблагоприятном действии вещества на состояние здоровья населения на уровне норматива может вызвать пересмотр норматива.

17.

Как видно, не существует единого критерия, по которому можно оценить все бесчисленные экологические проблемы, чтобы составить чёткий перечень их очерёдности. Даже если будет решено, например, что здоровье человека важнее экологического благополучия, то и тогда, по мнению учёных, нельзя основывать решения на том, что могут оправдаться наихудшие предположения. Учёные склоняются к заключению, что самой неотложной проблемой является парниковый эффект и глобальное потепление климата. Результаты этих изменений скажутся не сразу. и какое-то время они не будут заметны, но чтобы предотвратить их, мы должны действовать уже сейчас. Любая серьёзная политика, направленная на предотвращение потепления климата, потребует международного сотрудничества. Наиболее эффективные способы решения этого вопроса помогли бы решить и другие проблемы, связанные с экологией, экономикой и энергетикой. Нельзя выделить какое-то одно направление, которое само по себе способно привести к решающим переменам, но, принимая множество мер, направленных на уменьшение загрязнений, можно добиться значительного результата. Увеличение масштабов загрязнения атмосферы требуют быстрых и эффективных способов защиты её от загрязнения, а также способов предупреждения вредного воздействия загрязнителей воздуха. Атмосфера может содержать определённое количество загрязнителя без проявления вредного воздействия, т.к. происходит естественный процесс её очистки. Первым шагом в установлении вредного воздействия, связанного с загрязнением воздуха, является разработка критерия качества воздуха, а также стандартов качества. Другим подходом к улучшению состояния атмосферы является требование применения передовых технологических процессов, замена вредных материалов безвредными, применение мокрых способов обработки сырья вместо сухих. На промышленных предприятиях используются процессы или устройства для газоочистки и пылеулавливания, чтобы уменьшить или предотвратить величину выброса. Процессы газоочистки могут также разрушить или менять его химические или физические свойства так, что он становится менее опасным. В некоторых случаях используют метод рассеивания в атмосфере. Наиболее перспективным способом решения проблемы мусора и отходов является их переработка. Получили развитие следующие основные направления в переработке: органическая масса используется для получения удобрений, текстильная и бумажная макулатура используется для получения новой бумаги, металлолом направляется на переплавку. Основной проблемой в переработке является сортировка мусора и разработка технологических процессов переработки. Экономическая целесообразность способа переработки отходов зависит от стоимости альтернативных методов их утилизации, положения на рынке вторсырья и затрат на переработку. Долгие годы деятельность по переработке отходов затруднялась из-за того, что существовало мнение, будто любое дело должно приносить прибыль. Но забывалось, что переработка, по сравнению с захоронением и сжиганием, - наиболее эффективный способ решения проблемы отходов, так как требует меньше правительственных субсидий. Кроме того, он позволяет экономить энергию и беречь окружающую среду. И поскольку стоимость площадей для захоронения мусора растёт из-за ужесточения норм, а печи слишком дороги и опасны для окружающей среды, роль переработки отходов будет неуклонно расти. Все воды подлежат охране от загрязнения, засорения и истощения, которые могут причинить вред здоровью населения, а также повлечь уменьшение рыбных запасов, ухудшение условий водоснабжения и другие неблагоприятные явления вследствие изменений физических, химических, биологических свойств вод, снижение их способности к естественному очищению, нарушение гидрологического и гидрогеологического режима вод. Сброс в водные объекты производственных, бытовых и других видов отходов и отбросов должен быть запрещён. В целях поддержания благоприятного водного режима рек, озёр, водохранилищ, подземных вод и других водных объектов, для предупреждения заиления водоёмов, условий обитания водных животных устанавливаются водоохранные зоны лесов, а также проводятся лесомелиоративные, противоэрозионные, гидротехни-ческие и другие мероприятия.  Немаловажное значение для охраны окружающей среды имеет выбор территории для строительства новых и расширения существующих городов и других населённых пунктов. Следует выбирать территории на землях несельскохозяйственного значения или непригодных для сельского хозяйства либо на сельскохозяйственных землях худшего качества. Первоочередному освоению подлежат свободные от застройки земли, находящиеся в пределах границ, установленных для этого города или другого населённого пункта. Из всех проблем, выплывает главная проблема-проблема здравоохранения. Ведь за тот ущерб, который мы принесли природе и приносим ей каждый день, она нам отплачивает, в двойном размере. Сейчас очень трудно встретить абсолютно здорового человека. Поэтому нужно проводить мероприятия по оздоровлению внешней среды, обеспечению санитарной охраны водоёмов, почвы и атмосферного воздуха. 

18.

Атмосферный воздух — это природная смесь газов приземного слоя атмосферы за пределами жилых, производственных и иных помещений, сложившаяся в ходе эволюции Земли. Химический состав атмосферы (для сухого воздуха) содержит по весу: азота — 75,5%, кислорода — 23,2%, аргона — 1,28%, двуокиси углерода — 0,046%, озона — 3,6х10-5% и т. д.

Вдыхая каждую минуту от 50 до 100л воздуха, человек за сутки потребляет его до 12—15кг, а это значительно превосходит среднесуточную потребность в пище и воде.

Аэрогенный путь поступления токсических веществ в организм человека наиболее опасен, так как химические элементы в этом случае поглощаются организмом более интенсивно.

Антропогенные выбросы в атмосферу. Суммарные выбросы в атмосферу составляют 360 тонн отравляющих веществ на 1 куб. км.

Пыль является постоянным компонентом загрязнения атмосферного воздуха. Содержащиеся в частицах пыли примеси органических и неорганических соединений определяют ее токсическое действие. Например, пыль, содержащая в своем составе белково-витаминные вещества, вызвала развитие у населения, проживающего вблизи этих предприятий, аллергические заболевания (эпидемия бронхиальной астмы среди населения г. Ангарска и п. Кириши). Наиболее значимое влияние на состав атмосферы оказывают предприятия черной и цветной металлургии, химическая и нефтехимическая промышленность, стройиндустрия, энергетические предприятия, целлюлозно-бумажная промышленность, автотранспорт, котельные. Например, черная металлургия, выброс пыли в расчете на 1 тонну предельного чугуна составляет 4,5 кг, сернистого газа — 2,7 кг, марганца — 0,1 — 0,6 кг, плюс небольшие количества мышьяка, фосфора, сурьмы, свинца, паров ртути, цианистого водорода.

В результате сжигания топлива в атмосферу поступает более 20 миллиардов тонн двуокиси углерода и более 700 миллионов тонн других паро - и газообразных соединений и твердых частиц.

Автомобили являются причиной 10 — 25% заболеваний, хотя вырабатывают почти половину всех загрязнителей воздуха. Окислы серы и разнообразные мелкие частицы (смесь сажи, пепла, пыли, капелек серной кислоты, асбестовых волокон и т. д.) вызывают больше болезней, чем выхлопные газы автомобилей. Они поступают в атмосферу от электростанций, заводов, жилых домов. Вдыхание даже небольшого количества асбестовой пыли может через 20 — 30 лет привести к развитию рака легких.

В сельской местности объектами, загрязняющими окружающую среду, являются животноводческие и птицеводческие хозяйства, предприятия, обсуживающие технику. В атмосферный воздух выделяются аммиак, сероводород и другие, дурно пахнущие газы. Нерационально применяемые в растениеводстве минеральные удобрения и пестициды также загрязняют окружающую среду.

Окись углерода (СО) в воздухе сама по себе — наиболее ядовитая часть выхлопных газов автомобильных двигателей (а также светильного и печного газов). СО воздействует на психические функции и поведение человека и животных.

Накопление углекислого газа (С02) в атмосфере — одна из основных причин парникового эффекта, возрастающего от разогревания Земли лучами Солнца. Этот газ не пропускает солнечное тепло обратно в Космос.

При сжигании любого топлива выделяется в атмосферу диоксид серы (S02) и азота, где превращаются в слабый раствор. Из S02 и влаги воздуха, в конечном счете, образуется серная кислота, составляющая около 60% всех содержащихся в дождевой воде кислот (кислотные дожди).

Смог (смесь дыма и тумана). Сам по себе туман не опасен. Губительным для организма он становится в случае чрезмерного загрязнения токсическими веществами. Главная опасность — сернистый газ в концентрации 5—10 г\м куб. и выше. В декабре 1952 года смог в Лондоне за 3 — 4 дня погубил 4000 человек;

Озоновый экран Земли. Озон — трехатомные молекулы кислорода — рассеян над Землей на высоте от 15 до 50км. Если гипотетически сжать эту оболочку при нормальном атмосферном давлении, получится слой в 2 мм, однако без него жизнь на планете невозможна. Стратосферный озоновый слой защищает людей и живую природу от жестокого ультрафиолетового и мягкого рентгеновского излучения в ультрафиолетовой части солнечного спектра. Каждый потерянный процент озона в масштабах планеты вызывает до 150 тыс. дополнительных случаев слепоты от катаракты, на 2,6% увеличивает число раковых заболеваний кожи. УФО подавляет иммунную систему организма.

Главные факторы, разрушающие озоновый экран Земли:

§ применение фреонов в технике, парфюмерной и химической продукции (хлорфторуглероды);

§ запуск мощных ракет;

§ полеты реактивных самолетов в высоких слоях атмосферы;

§ испытания ядерного и термоядерного оружия;

§ уничтожение природного озонатора — лесов.

Механизмы самоочищения атмосферы:

  1. Аэрозольный-вредные в-ва взыешиваются в дожде, снеге и тд

  2. Осаждение электрическим полем атмосферы

  3. Сорбция встречающихся элементах ( деревья, здания)

  4. Рассеивание

Атмосферный воздух и здоровье. Загрязнением атмосферы обусловлено до 30% общих заболеваний населения промышленных центров. Загрязненный воздух, прежде всего, поражает легкие. Пыль проникает в альвеолы (менее 10 микрон), вызывает хронические заболевания органов дыхания и развитие раннего пневмосклероза (замещение легочной ткани соединительной). Получены данные о влиянии загрязненного воздуха на смертность от коронарной болезни сердца. Обнаружена связь загрязнения атмосферного воздуха с ростом заболеваний генетической природы. В загрязненных районах чаще встречаются неблагоприятно протекающие беременности и роды. Новорожденные в таких городах имеют низкую массу тела, низкий уровень физического развития, а также функциональные отклонения сердечно-сосудистой и дыхательной систем.

Самый чистый и полезный для здоровья воздух можно найти на берегах морей, в лесах, в горах. Там он содержит большое ко­личество отрицательно заряженных ионов, облегчающих усвоение кислорода. Кислород, озон, фитанциды и др. ценные для организма компоненты придают воздуху целебные свойства и составляют основу климатотерапии

19.

Загрязнение атмосферного воздуха промышленных городов оказывает многообразное вредное воздействие; отравление населения токсичными вещества­ми приводит к ухудшению здоровья и снижению работоспособности, способствует ухудшению санитарных условий жизни населения, а также приносит экономический ущерб в результате потери ценного сырья в виде отходов. Малые концентрации токсичных веществ атмосферного воздуха способствуют развитию у населения хронических отравлений. Симптомы отравления часто бывают маловыраженными, субъективные жалобы неопределенны. Часто хрони­ческое воздействие токсичного вещества приводит к снижению защитных сил! организма, что проявляется в повышении общей заболеваемости либо в пони­жении работоспособности. В связи с загрязнением атмосферного воздуха воз­растает частота хронических неспецифических заболеваний бронхолегочной системы, становятся более тяжелыми сердечно-сосудистые заболевания. Под влиянием окиси углерода развивается более выраженный и ранний атероскле­роз, изменяется сердечная проводимость. Действие пыли атмосферного возду­ха на население менее выражено, чем действие пыли на рабочих промышлен­ных предприятий, из-за меньшей концентрации и быстрого разбавления в атмосфере. Однако отмечены случаи развития у населения, проживающего в районах с сильным запылением атмосферного воздуха выбросами ТЭЦ,

работающих на многозольном топливе, начальных пневмокониотических измене­ний в легких. Наиболее выраженные изменения отмечены у детей, стариков, лиц с хроническими заболеваниями бронхолегочной системы. Загрязнение атмосферного воздуха крупнодисперсной пылью способствует глазному трав­матизму, обращаемость населения за медицинской помощью по поводу ино­родных тел глаз в промышленных районах в 3—4 раза выше, чем в пригороде. Население, проживающее в районах с сильным загрязнением атмосферного воздуха, в 3-5 раз чаще болеет бронхитом, пневмонией, ангиной, чем населе­ние чистых районов. История гигиены знает множество случаев массовых от­равлений населения в результате загрязнения атмосферного воздуха (табл. 4.7).

В декабре 1930 г. в Бельгии, в долине реки Маас, в течение 5 дней установи­лась погода с высоким барометрическим давлением, туманом и слабым вет­ром. В долине была температурная инверсия, т. е. температура верхних слоев воздуха превышала температуру приземных слоев, что ухудшало условия вер­тикальных конвекционных токов и не способствовало перемешиванию возду­ха Жители долины ощущали резкий запах сернистого газа. Появились жало­бы на нарушение функции верхних дыхательных путей и легких. За 5 дней переболело несколько сотен человек, из них 60 человек умерли. Особенно пострадали лица, имеющие хронические заболевания сердца и легких. При вскрытии трупов погибших отмечали геморрагические и некротические очаги на слизистых оболочках бронхов и в тканях легких, характерные для отравле­ния сернистым газом. Эта катастрофа не была следствием аварии на заводах. Заводы работали обычным образом и выбрасывали в воздух те же количества сернистого газа, что и прежде. Причиной отравления населения стал токсич­ный туман, который во влажную безветренную погоду способствовал накоп­лению в воздухе сернистого газа и аэрозоля серной кислоты.

Этот случай не единственный. В 1948 г. в г. Донора в США также произош­ло массовое отравление населения сернистым газом. Жалобы были те же, что у жителей долины Маас. За 5 дней тумана переболело 42% населения, из них умерло 20 человек. На вскрытии обнаружены геморрагические и некротичес­кие очаги в бронхах с явлениями отека легких. В 1952 г. в Лондоне повтори­лась катастрофа, происшедшая там же 70 лет назад. С 5 по 9 декабря стоял густой туман, и высокая влажность и безветрие способствовали превращению сернистого газа в аэрозоль серной кислоты. За это время умерло 2500 человек, хотя в предыдущие дни смертность не превышала 100 человек в неделю. 0собенно увеличилась смертность среди пожилых людей и детей.

В последнее время периодически отмечаются случаи появления раздражающих туманов, которые содержат комплексы органических соединений серы.

Известны подъемы заболеваемости населения, связанные с кратковремен­ным увеличением концентраций токсичных веществ в воздухе. Описаны вспышки бронхиальной астмы у лиц, ранее не болевших, связанные с отравлениям выбросами нефтеперерабатывающих заводов или продуктами сжигания мусора. Отмечены аллергические реакции у населения в зоне выбросов завода микробиологической промышленности. Постоянное воздействие оксида угла рода особенно сказывается на состоянии здоровья милиционеров-регулировщиков, находящихся на оживленных автомагистралях, в местах скопления автотранспорта. В результате длительного вдыхания воздуха с повышенным со держанием оксида углерода у регулировщиков уличного движения развивался хроническое отравление с увеличением количества карбоксигемоглобина в кро­ви, жалобами на головную боль, головокружение, расстройство сна, сердцеби­ение и раздражительность. Накопление в крови до 7—9% карбоксигемоглобин у водителей обусловливает замедление психомоторных реакций, снижение цве­тоощущения, что способствует дорожным авариям. Начальные изменения по­веденческих реакций отмечаются у людей при 2,5% карбоксигемоглобина I крови, а увеличение концентрации до 5% провоцирует приступы стенокардии у больных. Уровень карбоксигемоглобина в крови не должен превышать 2%.Г

Неблагоприятное действие на организм загрязнителей атмосферного воздуха проявляется также в накоплении некоторых веществ (свинец, кадмий и др.! в костях и тканях организма, что может привести к развитию хронически! отравлений у населения, проживающего вблизи источников выброса в атмо­сферу этих соединений. Экспериментально доказано накопление свинца в костях мышей, которые дышали атмосферным воздухом, загрязненным выбро­сами заводов цветной металлургии. Установлена связь между концентрациями свинца в воздухе и количеством свинца, накопленного в костях животных.

Длительное действие малых концентраций токсичных веществ может прово­цировать обострения хронических заболеваний бронхо-легочной системы, укорачивать ремиссии, повышать частоту осложнений. Все больше случаев специфических заболеваний, связанных с загрязнением атмосферного воздуха отмечается у населения, не имеющего профессионального контакта с загрязняющими веществами

Загрязнение атмосферного воздуха способствует снижению иммунобиоло­гической резистентности организма, ухудшению показателей физического раз­вития детей, повышению обшей заболеваемости населения.

В настоящее время нельзя не считаться с вредным действием канцероген­ных веществ окружающей среды на организм человека. Если в 1940 г. рак бронхолегочной системы занимал 12-е место среди всех форм рака, то в 1960 г. — уже 5-е место, а в 1980 г. — 2-е место. Это связывают с увеличением содержа­ния в воздухе городов канцерогенов и коканцерогенов.

Развитие рака бронхолегочной системы связывают и с табакокурением. Подсчитано, что при выкуривании 40 сигарет в день человек вдыхает около 150 мг бензпирена дополнительно к бензпирену атмосферного происхождения.

Основными симптомами хронического отравления свинцом являются свинцовая кайма на деснах (его соединение с уксусной кислотой), свинцовый цвет кожи (золотисто-серая окраска), базофильная зернистость эритроцитов, гематопорфирин в моче, повышенное выведение свинца с мочой, изменения со стороны центральной нервной системы и желудочно-кишечного тракта (свинцовый колит).

Второе место по объему выбросов в атмосферу занимают промышленные предприятия. Среди них наибольшую значимость имеют предприятия черной и цветной металлургии, тепловые электростанции, предприятия нефтехимии, сжигание отходов – полимеров. В течение нескольких столетий увеличивались проблемы, связанные с загрязнением атмосферного воздуха продуктами сжигания топлива, наибольшим проявлением которых стали густые желтые туманы, присущие пейзажам Лондона и других больших городских агломераций. Событием, которое привлекло к себе мировое внимание, явился печально известный лондонский туман в декабре 1952 г., который продолжался несколько дней и унес 4000 жизней, так как имел чрезвычайно высокую концентрацию дыма, двуокиси серы и других загрязнений.

Черная металлургия. Выброс пыли в расчете на 1 т передельного чугуна составляет 4,5 кг, сернистого газа – 2,7 кг и марганца 0,1–0,6 кг. Вместе с доменным газом в атмосферу выбрасываются в небольших количествах также соединения мышьяка, фосфора, сурьмы, свинца, пары ртути и редких металлов, цианистый водород и смолистые вещества.

Выбросы цветной металлургии содержат в себе токсические пылевидные вещества, мышьяк, свинец. При получении металлического алюминия путем электролиза в атмосферный воздух выделяется значительное количество газообразных и пылевидных фтористых соединений. При получении 1 т алюминия в зависимости от типа и мощности электролиза расходуется 38–47 кг фтора, при этом около 65 % его попадает в атмосферный воздух.

Установлен патогенетический аспект влияния загрязнения атмосферного воздуха – системный мем-браноповреждающий эффект основных клеточных структур. Понимание этого процесса позволяет определить систему профилактических мероприятий.

Химическое загрязнение атмосферного воздуха повышает чувствительность организма к воздействию неблагоприятных факторов, в том числе инфекции, особенно у детей при нерациональном питании.

Загрязнение окружающей среды, и в особенности воздуха, выбросами промышленных предприятий, автомобильного транспорта вызывает в последние годы все большее беспокойство во многих странах.

Значительная часть этих выбросов, соединяясь в атмосфере с водяными парами, выпадает затем на землю в виде так называемых кислотных дождей.

Под атмосферными загрязнениями мы условно понимаем те примеси к атмосферному воздуху, которые образуются не в результате стихийных процессов природы, а в результате деятельности человека.

Атмосферные загрязнения разделяются на 2 группы:

1) земные;

2) внеземные.

Однако искусственные загрязнения антропогенного происхождения в настоящее время приобрели приоритетный характер. Они делятся на радиоактивные и нерадиоактивные.

Нерадиоактивные, или прочие, загрязнения – тема сегодняшней лекции. Они представляют в настоящее время экологическую проблему. Выхлопные газы автотранспорта, составляющие около половины атмосферных загрязнений антропогенного происхождения, продуктов износа механических частей, покрышек и дорожного покрытия.

В состав выхлопных газов, помимо азота, кислорода, углекислого газа и воды, входят окись углерода, углеводороды, окислы азота и серы, а также твердые частицы. Состав отработанных газов зависит от рода применяемого топлива, присадок и масел, режимов работы двигателя, его технического состояния, условий движения автомобиля и др. Токсичность отработанных газов карбюраторных двигателей обусловливается главным образом содержанием окиси углерода и окислов азота, а дизельных двигателей – окислами азота и сажей.

Годовой выхлоп одного автомобиля – это в среднем 800 кг окиси углерода, 40 кг окислов азота и более 200 кг различных углеводородов. В этом наборе окись углерода наиболее коварна. Легковой автомобиль с двигателем 50 л. с. выбрасывает в атмосферу 60 л оксида углерода в минуту.

Токсичность оксида углерода обусловлена высоким сродством c гемоглобином, в 300 раз большим, чем с кислородом. В нормальных условиях в крови человека находится в среднем 0,5 % карбоксигемогло-бина. Содержание карбоксигемоглобина более 2 % считается вредным для здоровья человека.

Существуют хроническое и острое отравление оксидом углерода. Острое отравление часто отмечается в гаражах автолюбителей. Действие оксида углерода усиливается в присутствии углеводородов в выхлопных газах, которые также являются канцерогенами (циклические углеводороды, 3,4 – бензпирен), алифатические углеводороды обладают раздражающим слизистые действием (слезоточивый смог). Содержание углеводородов на перекрестках у светофоров в 3 раза больше, чем в середине квартала.

В условиях высокого давления и температуры (что имеет место в двигателях внутреннего сгорания) образуются окислы азота (NO)n. Они являются метгемо-глобинобразователями и обладают раздражающим действием. Под воздействием УФ-излучения (NO)n подвергаются фотохимическим превращениям.

20.

Атмосферный воздух — это природная смесь газов приземного слоя атмосферы за пределами жилых, производственных и иных помещений, сложившаяся в ходе эволюции Земли. Химический состав атмосферы (для сухого воздуха) содержит по весу: азота — 75,5%, кислорода — 23,2%, аргона — 1,28%, двуокиси углерода — 0,046%, озона — 3,6х10-5% и т. д.

Вдыхая каждую минуту от 50 до 100л воздуха, человек за сутки потребляет его до 12—15кг, а это значительно превосходит среднесуточную потребность в пище и воде.

Аэрогенный путь поступления токсических веществ в организм человека наиболее опасен, так как химические элементы в этом случае поглощаются организмом более интенсивно.

Антропогенные выбросы в атмосферу. Суммарные выбросы в атмосферу составляют 360 тонн отравляющих веществ на 1 куб. км.

Пыль является постоянным компонентом загрязнения атмосферного воздуха. Содержащиеся в частицах пыли примеси органических и неорганических соединений определяют ее токсическое действие. Например, пыль, содержащая в своем составе белково-витаминные вещества, вызвала развитие у населения, проживающего вблизи этих предприятий, аллергические заболевания (эпидемия бронхиальной астмы среди населения г. Ангарска и п. Кириши). Наиболее значимое влияние на состав атмосферы оказывают предприятия черной и цветной металлургии, химическая и нефтехимическая промышленность, стройиндустрия, энергетические предприятия, целлюлозно-бумажная промышленность, автотранспорт, котельные. Например, черная металлургия, выброс пыли в расчете на 1 тонну предельного чугуна составляет 4,5 кг, сернистого газа — 2,7 кг, марганца — 0,1 — 0,6 кг, плюс небольшие количества мышьяка, фосфора, сурьмы, свинца, паров ртути, цианистого водорода.

В результате сжигания топлива в атмосферу поступает более 20 миллиардов тонн двуокиси углерода и более 700 миллионов тонн других паро - и газообразных соединений и твердых частиц.

Автомобили являются причиной 10 — 25% заболеваний, хотя вырабатывают почти половину всех загрязнителей воздуха. Окислы серы и разнообразные мелкие частицы (смесь сажи, пепла, пыли, капелек серной кислоты, асбестовых волокон и т. д.) вызывают больше болезней, чем выхлопные газы автомобилей. Они поступают в атмосферу от электростанций, заводов, жилых домов. Вдыхание даже небольшого количества асбестовой пыли может через 20 — 30 лет привести к развитию рака легких.

В сельской местности объектами, загрязняющими окружающую среду, являются животноводческие и птицеводческие хозяйства, предприятия, обсуживающие технику. В атмосферный воздух выделяются аммиак, сероводород и другие, дурно пахнущие газы. Нерационально применяемые в растениеводстве минеральные удобрения и пестициды также загрязняют окружающую среду.

Окись углерода (СО) в воздухе сама по себе — наиболее ядовитая часть выхлопных газов автомобильных двигателей (а также светильного и печного газов). СО воздействует на психические функции и поведение человека и животных.

Накопление углекислого газа (С02) в атмосфере — одна из основных причин парникового эффекта, возрастающего от разогревания Земли лучами Солнца. Этот газ не пропускает солнечное тепло обратно в Космос.

При сжигании любого топлива выделяется в атмосферу диоксид серы (S02) и азота, где превращаются в слабый раствор. Из S02 и влаги воздуха, в конечном счете, образуется серная кислота, составляющая около 60% всех содержащихся в дождевой воде кислот (кислотные дожди).

Смог (смесь дыма и тумана). Сам по себе туман не опасен. Губительным для организма он становится в случае чрезмерного загрязнения токсическими веществами. Главная опасность — сернистый газ в концентрации 5—10 г\м куб. и выше. В декабре 1952 года смог в Лондоне за 3 — 4 дня погубил 4000 человек;

Озоновый экран Земли. Озон — трехатомные молекулы кислорода — рассеян над Землей на высоте от 15 до 50км. Если гипотетически сжать эту оболочку при нормальном атмосферном давлении, получится слой в 2 мм, однако без него жизнь на планете невозможна. Стратосферный озоновый слой защищает людей и живую природу от жестокого ультрафиолетового и мягкого рентгеновского излучения в ультрафиолетовой части солнечного спектра. Каждый потерянный процент озона в масштабах планеты вызывает до 150 тыс. дополнительных случаев слепоты от катаракты, на 2,6% увеличивает число раковых заболеваний кожи. УФО подавляет иммунную систему организма.

Главные факторы, разрушающие озоновый экран Земли:

§ применение фреонов в технике, парфюмерной и химической продукции (хлорфторуглероды);

§ запуск мощных ракет;

§ полеты реактивных самолетов в высоких слоях атмосферы;

§ испытания ядерного и термоядерного оружия;

§ уничтожение природного озонатора — лесов.

Механизмы самоочищения атмосферы:

  1. Аэрозольный-вредные в-ва взыешиваются в дожде, снеге и тд

  2. Осаждение электрическим полем атмосферы

  3. Сорбция встречающихся элементах ( деревья, здания)

  4. Рассеивание

Атмосферный воздух и здоровье. Загрязнением атмосферы обусловлено до 30% общих заболеваний населения промышленных центров. Загрязненный воздух, прежде всего, поражает легкие. Пыль проникает в альвеолы (менее 10 микрон), вызывает хронические заболевания органов дыхания и развитие раннего пневмосклероза (замещение легочной ткани соединительной). Получены данные о влиянии загрязненного воздуха на смертность от коронарной болезни сердца. Обнаружена связь загрязнения атмосферного воздуха с ростом заболеваний генетической природы. В загрязненных районах чаще встречаются неблагоприятно протекающие беременности и роды. Новорожденные в таких городах имеют низкую массу тела, низкий уровень физического развития, а также функциональные отклонения сердечно-сосудистой и дыхательной систем.

Самый чистый и полезный для здоровья воздух можно найти на берегах морей, в лесах, в горах. Там он содержит большое ко­личество отрицательно заряженных ионов, облегчающих усвоение кислорода. Кислород, озон, фитанциды и др. ценные для организма компоненты придают воздуху целебные свойства и составляют основу климатотерапии

21.

Организационно-правовые мероприятия

Включают создание нормативно-правовой базы экологической безопасности и меры государственного, административного и общественного контроля за выполнением функций по охране природы. Они направлены на исполнение природоохранного законодательства на транспорте, разработку экологических стандартов, норм и нормативов.

 

Архитектурно-планировочные мероприятия

Для снижения загазованности воздуха в городах большое значение имеют планировочные мероприятия по застройке, реконструкции территорий и организации транспортного сообщения.

Снижение уровня экологической опасности от воздействия транспорта возможно путем

·        создания объездных кольцевых железнодорожных и автомобильных дорог;

·        строительства путепроводов, транспортных развязок на разных уровнях, тоннелей и пешеходных переходов;

·        расширения магистралей и развития улично-дорожной сети;

·        внедрения автоматизированных систем управления дорожным движением, позволяющих использовать принцип «зеленой волны» и сократить простои автотранспорта перед светофорами;

·        организации одностороннего движения на участках городской застройки с узкой проезжей частью;

·        выделения в центральной части городов территорий с запретом или ограничением на движение большегрузного автотранспорта.

Проблемы экологической безопасности находят свое отражение  в эколого - градостроительных планах крупных городов. 

Архитектурно-планировочные мероприятия по защите водных объектов подразумевают рациональную планировку портов, строительство каналов и шлюзов, проведение дноуглубительных работ, спрямлении фарватеров и судовых трасс.

Конструкторско-технические мероприятия

Направлены на улучшение экологических показателей транспортных средств и сокращение выбросов вредных веществ от стационарных источников.

Конструкторско-технические мероприятия, осуществляемые на подвижном составе, группируются по направлениям:

1)    повышения экономичности двигателей;

2)    снижения массы конструкции;

3)    уменьшения сопротивления движению;

4)    снижения токсичности отработавших газов;

5)    использования экологически более чистых видов топлива;

6)    применения комбинированных источников энергии.

Повышение экономичности двигателей достигается совершенство-ванием их конструкции и позволяет сократить потребление топлива и, соответственно, снизить выбросы загрязняющих веществ. Одновременно обеспечивается сбережение топливно-энергетических ресурсов, что является еще одной важной экологической задачей. Основой сокращения расхода топлива и выброса вредных веществ является улучшение процесса сгорания в двигателях транспортных средств.

 

Снижение расхода топлива имеет большое значение в первую очередь для грузовых автомобилей с карбюраторными двигателями большого рабочего объема. Применение на этих двигателях вихревого движения рабочей смеси, улучшающего качество смесеобразования и распределения по цилиндрам, способствует снижению расхода топлива на 5-6 %.

Улучшение рабочего процесса двигателя достигается применением различных устройств в карбюраторе, например, экономайзеры принудительного холостого хода снижают расход топлива на 2 %. Почти все современные карбюраторы оснащены автоматами пуска и прогрева, точное соблюдение температурного режима при пуске и прогреве двигателя способствует снижению расхода топлива.

На некоторых моделях автомобилей, в основном отечественного производства, используются двигатели с форкамерно-факельным зажиганием. При этом способе зажигания обедненная рабочая смесь в камере сгорания двигателя воспламеняется от факела продуктов неполного сгорания, выбрасываемых через сопловые отверстия из дополнительной камеры (форкамеры) малого объема. Это позволяет снизить расход топлива на 8-10 %, содержание оксидов азота и углеводородов в отработавших газах.

В современных условиях наилучшим техническим решением остается применение электронных систем впрыска топлива с точным дозированием топлива по отдельным цилиндрам на всех режимах работы двигателя. Применение таких систем также позволяет снизить расход топлива на 8-10 %.

 

Дизельный двигатель экономичнее карбюраторного на 20-30 %, токсичность отработавших газов дизеля значительно ниже, поэтому их широко применяют на большегрузных автомобилях, автобусах. Система питания дизельного двигателя обеспечивает более точное дозирование топлива по сравнению с карбюраторными двигателями при различных режимах работы, что наряду с высоким коэффициентом избытка воздуха и высокой степенью сжатия способствует боле полному сгоранию топлива в цилиндрах двигателя и снижению токсичности выбросов (табл. 5).

Высокая топливная экономичность может быть достигнута при использовании и дизельно-газовых двигателей, способных работать попеременно как на дизельном, так и на газовом топливе. Газодизельный двигатель не уступает по мощности дизелю и позволяет экономить в эксплуатации до 80 % дизельного топлива.

 

 

Таблица 5

Структура токсичных компонентов при сжигании 1 кг топлива

 

Основные компоненты  отработавших газов

Карбюраторный двигатель

Дизельный двигатель

г

%

г

%

Оксид углерода

225

73,8

25

25,5

Оксиды азота

55

18,1

38

38,8

Углеводороды

20

6,6

8

8,2

Оксиды серы

2

0,7

21

21,4

Альдегиды

1

0,3

1

1,0

Сажа

1,5

0,5

5

5,1

Итого

304,5

100,0

98

100,0

 

Снижение массы конструкции транспортных средств может осуществляться за счет изменения конструкции агрегатов, совершенствования технологических процессов изготовления автомобилей и замены материалов на более легкие. Важность этого направления подтверждается таким примером: на каждую дополнительную тонну снаряженной массы автомобиля расходуется на 100 км пути 2,5 л бензина или 1,6 л дизельного топлива. Снижение собственной массы автомобиля дает экономию энергоресурсов на 8-10 %.

 

Уменьшение сопротивления движению является важным условием сокращения расхода топлива. Для автомобилей это направление  определяется правильным выбором передаточных чисел главной передачи и коробки передач. С увеличением числа передач, применяемых на грузовых автомобилях, возрастают трудности в выборе оптимальной передачи при изменении условий движения, поэтому наблюдается перерасход топлива. Требуется разработка специальных автоматических приборов, сигнализирующих о необходимости включения нужной передачи, что повысит экономичность автомобилей.

При движении с высокой скоростью значительная часть энергии затрачивается на преодоление сопротивления движению в воздушной или водной среде. Эти затраты в воздушной среде прямо пропорциональны квадрату скорости и определяются фактором обтекаемости. Аэродинамические свойства автомобилей повышаются за счет придания обтекаемой формы, правильного расположения груза, установки специальных обтекателей (дефлекторов) на крыше кабины грузового автомобиля, что приводит, в конечном счете, к снижению расхода топлива.

 

Снижение токсичности отработавших газов достигается рядом технических решений, которые включают установку нейтрализаторов выхлопных газов, фильтров, присадок к топливу.

Системы нейтрализации отработавших газов применяются как дополнительное оборудование, которое без значительных изменений в конструкции двигателя легко встраивается в выпускной тракт двигателя. Различают следующие виды нейтрализации токсичных отработавших газов: термический, каталитический, жидкостный и комбинированный. В самостоятельную группу выделяют способы удаления из газов твердых частиц (сажи).

Термическая нейтрализация вызывает протекание реакций окисления оксида углерода и углеводородов и превращения их в продукты полного сгорания ‑ углекислый газ и пар при высоких температурах.

Каталитическая нейтрализация помимо окислительных реакций предполагает использование и восстановительных ‑ для восстановления оксидов азота в исходные вещества: кислород и азот. В окислительных и восстановительных реакциях могут применяться относительно дешевые оксидные катализаторы на основе меди, марганца, никеля, хрома, но они обладают малой долговечностью и эффективностью. Поэтому распространение получили платино - палладиевые катализаторы.

Жидкостные нейтрализаторы основаны на растворении или химическом связывании токсичных компонентов при пропускании отработавших газов через активную жидкость. В качестве активной жидкости могут использоваться вода и водные растворы разных веществ, в частности 10 %-й водный раствор сульфита натрия, ингибированный гидрохиноном с целью замедления окисления сульфита натрия кислородом воздуха, и 10%-й водный раствор двууглекислой соды.

В отличие от термического и каталитического нейтрализаторов жидкостный не требует времени для перехода в рабочее состояние после пуска холодного двигателя. Недостатком жидкостного нейтрализатора являются большие масса и габариты, а также необходимость частой смены рабочего раствора.

Оборудование системы выпуска двигателей внутреннего сгорания фильтрами и специальными улавливателями способствует задержанию твердых частиц отработавших газов.

Применение присадок к топливу оказывает заметное влияние на процесс сгорания в дизелях и качество отработавших газов. По характеру действия присадки к топливу подразделяют на присадки, интенсифицирующие горение, и антидымные.

Интенсификаторы горения повышают цетановое число и уменьшают количество светлого дыма, появляющегося при работе холодного двигателя. В качестве присадок могут использоваться метилацетат, ацетонпероксид, этилнитрат, изоамилнитрат и др. Их целесообразно добавлять к топливу с низким цетановым числом.

Антидымные присадки применяют для уменьшения темного дыма (сажи). Наиболее эффективны присадки, содержащие барий, метилцик-лопентадиенилтрикарбонилмарганца (МЦТМ) и тетраэтилсвинец. Эти металлосодержащие присадки практически не влияют на выделение дизельными двигателями оксида углерода, но существенно снижают выделение альдегидов, бензпирена и ускоряют выгорание сажи.

Использование экологически более чистых видов топлива на подвижном составе транспорта является радикальным средством снижения загрязнения атмосферного воздуха. С этой целью для карбюраторных и дизельных двигателей разработаны и успешно применяются системы питания, работающие на газовом топливе. В качестве газового топлива для ДВС используют сжиженный нефтяной газ (СНГ) и сжатый природный газ (СПГ).

Сжиженный нефтяной газ получают при переработке нефти как побочный продукт, состоящий в основном из пропан-бутановых фракций. Его выпуск составляет 2-3 % от выхода основной продукции при перегонке нефти. Но этого вполне достаточно для удовлетворения мно­гих потребностей, включая потребности транспортных средств, переведенных на питание нефтяным газом. По калорийной способности нефтяной газ уступает не более чем на 3-4 % бензину, поэтому при переводе карбюраторного двигателя на газ его мощность снижается незначительно.

Сжатый природный газ в качестве основного компонента содержит метан и в небольшом количестве примеси других газов. Сжатый газ хранится в высокопрочных металлических баллонах под давлением 200 МПа. Калорийность природного газа ниже калорийности бензина на 10-15 %.

Применение СНГ и СПГ позволяет снизить токсичность отработавших газов по контролируемым веществам: оксиду углерода в 3-4 раза, оксидам азота в 1,2-2,0 раза, углеводородам в 1,2-1,4 раза.

 

Применение электрической энергии и комбинированных источников энергии на транспортных средствах позволяет улучшить их экологические показатели и способствует сохранению топливно - энергетических природных ресурсов.

На железнодорожном транспорте успешно используется перевод локомотивного парка на электрическую тягу. Электровозы работают на постоянном и переменном токе и практически не загрязняют атмосферный воздух.

На морских судах применяют энергоустановки, работающие от нескольких дизель-генераторов и обеспечивающие электропривод главного судового винта.

В течение многих лет создаются и испытываются экспериментальные образцы и опытные партии электромобилей, однако не созданы конструкции для серийного производства. Основным препятствием на пути широкого внедрения электромобилей является несовершенство источника энергии ‑ аккумуляторных батарей. Представляет практический интерес комбинированная энергоустановка для автомобилей ‑ сочетание буферного накопителя электроэнергии и мотор-генератора.

Конструкторско-технические мероприятия по защите водных объектов направлены на предотвращение и уменьшение последствий загрязнения водоемов, морей при функционировании транспорта. При разработке водоохранных мероприятий учитывается способность водных объектов к самоочищению, которое происходит в виде естественного процесса распада органических веществ в результате деятельности микроорганизмов. Процесс биохимического самоочищения нарушается токсичными веществами, например металлами, нефтепродуктами, что приводит к кислородному дисбалансу водоема. Поэтому технические мероприятия по борьбе с загрязнением воды должны прежде всего способствовать очистке от токсичных примесей известными методами.

 

Эксплуатационные мероприятия осуществляются в процессе эксплуатации транспортных средств и направлены на поддержание их технического состояния на уровне заданных экологических нормативов.

Важная роль отводится обеспыливанию дорог и аэродромов. Такая необходимость возникает на дорогах и аэродромах с гравийным, щебеночным, грунтовым покрытиями. Наиболее эффективным способом обеспыливания является нанесение на покрытия органических вяжущих материалов: вязких и жидких битумов, дегтя и смол, нефти, масел, эмульсий и других. В этом случае на поверхности дороги образуется эластичная поверхностная пленка.

Проводится работа по защите земель в полосе отвода транспортных магистралей. На землях полосы отвода железных и автодорог осуществляются лесонасаждение, рекультивация земель с подсыпкой плодородного слоя почвы.

На трубопроводном транспорте разрабатываются и осуществляются меры по ликвидации последствий утечек нефти и нефтепродуктов из трубопроводов и резервуаров. Это же относится и к утечкам газа, который создает взрывоопасные смеси с воздухом.

На стационарных источниках сокращение вредных выбросов достигается внедрением очистных сооружений.

 

Снижение транспортного шума и вибраций

На комплексное решение проблемы шума направлено составление карты шумового загрязнения города, куда наносятся стационарные и передвижные источники шума. Такая карта может стать основой градостроительных мер по защите жилой застройки от шума. К градостроительным факторам относятся этажность и композиция жилой застройки, рельеф местности, озеленение, ширина улицы в линиях застройки. Транспортно-планировочными факторами являются ширина проезжей части, ширина тротуара, газонов, разделительных полос, инженерные сооружения по защите окружающей среды.

Шумные промышленные производства и транспортные объекты следует выносить за пределы города на значительное удаление. В их числе аэропорты, крупные сортировочные и грузовые станции, авиаремонтные заводы. Вокруг них создаются санитарно-защитные зоны и зоны ограничения  застройки.

Акустическое воздействие автотранспортных потоков, железнодорожных составов, самолетов гражданской авиации очень велико, поэтому постоянно ведутся поиски технических решений и конструкторские работы по снижению шума.

 

На автомобильном транспорте улучшение акустических показателей достигается за счет сокращения шума от основных источников его образования: двигателя, систем впуска воздуха и выпуска отработавших газов, агрегатов трансмиссии, шин и др.  Уменьшение шума двигателя достигается применением в его конструкции нетрадиционных решений, широким использованием в узлах и деталях пластмассы, резины, керамики, алюминия и других композиционных материалов. Системы впуска воздуха оборудуют одно-  и многоступенчатыми воздушными фильтрами, которые вместе с эффективной очисткой воздуха осуществляют функцию глушения шума впуска. Системы выпуска отработавших газов ДВС снабжают глушителями выпуска. В последнее время на зарубежных автомобилях устанавливают глушители - нейтрализаторы отработавших газов, обеспечивающие эффективное глушение шума и каталитическую нейтрализацию выбросов.

Шины автомобиля являются источником шума на скоростях движения свыше 50 км/ч. Уровень шума в значительной степени определяется рисунком протектора шины. Гладкий рисунок протектора предназначается для скоростных шин и создает меньший шум. Рельефный рисунок предназначен для движения в условиях низкокачественного дорожного покрытия с малыми скоростями. При движении с повышенными скоростями такие шины создают очень сильный шум.

Кузов автомобиля при движении контактирует своей внешней поверхностью с потоками воздуха, в результате чего образуется аэродинамический шум. Для снижения этого шума разработаны новые компоновочные схемы автомобилей, обтекатели на грузовых автомобилях.

Повышению комфортности и других потребительских качеств автомобилей служит шумоизоляция салона и кабины водителя с применением современных синтетических материалов. Этой же цели служат наносимые на днище и боковые панели кузова, двери, панели моторного отсека вибропоглощающие и противокоррозионные пасты.

Шумовое воздействие автомобильного транспорта во многом определяется профилем дороги и типом покрытия. Наименьший шум регистрируется при движении по асфальтобетону. Другие виды покрытий вызывают прирост шума, особенно на больших скоростях движения. Ведутся работы по совершенствованию технологии строительства, ремонта и содержания автодорог.

 

На железнодорожном транспорте к конструкторским мероприятиям относятся оборудование маневровых тепловозов глушителями шума, применение резиновых подрельсовых прокладок, переделка звеньевого пути на бесстыковой, совершенствование тормозных устройств, уменьшение массы подвижного состава и др.

 

На морском и речном транспорте меры по снижению шумового воздействия направлены на защиту пассажиров и команды судна. С этой целью внутренняя планировка составляется с учетом требования максимально возможного удаления кают и салонов от источников шума ‑ гребных винтов, машинного отделения и др. Осуществляется звуко- и виброизоляция  помещений.

 

На воздушном транспорте для снижения шума от двигателей летательных аппаратов применяют конструкторские меры, которые реализуются как на стадии проектирования газодинамического тракта, так и при изготовлении узлов и деталей двигателя в целом. Эти меры, обеспечивая определенный эффект снижения шума, приводят к повышению расхода топлива и увеличению выброса вредных веществ.

Своевременное техническое обслуживание транспортных средств способствует поддержанию деталей конструкций не только в исправном состоянии, но и на заданном уровне шума. Наиболее простой способ снижения шумового воздействия ‑ рассредоточение источников шума по территории аэропорта и их максимально возможное удаление от мест пребывания людей, технологически не связанных с выполнением необходимых работ.

Таким образом, ТДК вносит определяющий вклад в загрязнение атмосферного воздуха России. Особенно существенна его доля по выбросам оксида углерода и углеводородов (3/4 общероссийского объема). Вклад ТДК в загрязнение водных объектов незначителен.

22

Главное значение для человеческой цивилизации на современном этапе представляют воды, формирующиеся в пределах континентальной части Земли. Поэтому к водным ресурсам мы склонны относить только ту часть воды, которая доступна для использования.

В связи с неуклонным ростом численности населения Земли вода все в большей степени становится необходимой для удовлетворения бытовых нужд, промышленности, сельского хозяйства и других целей. По мере роста жизненного уровня увеличивается потребление воды на душу населения, следовательно, потребность человечества в воде будет возрастать.

Под комплексным использованием водных ресурсов понимается одновременное, наиболее рациональное удовлетворение потребностей заинтересованных в воде отраслей народного хозяйства и оптимальное сочетание интересов всех водопотребителей. При этом один водный объект может использоваться несколькими отраслями или одним водопотребителем для нескольких целей. Следует также иметь в виду, что в зависимости от количества водных ресурсов не все водопотреби-тели в равной мере могут быть удовлетворены в своих запросах на воду. Поэтому введено ранжирование водо-потребителей, где приоритет принадлежит питьевой воде для населения.

Все без исключения отрасли народного хозяйства пользуются водой или потребляют ее. В водохозяйственной практике принято различать: водопотребле-ние — это забор и отвод воды из источника для удовлетворения нужд промышленных, сельскохозяйственных и коммунальных предприятий и организаций; водопользование — вода используется без забора из источника, т. е. как среда (рыбное хозяйство, гидроэнергетика, речной транспорт). Особое место занимают рекреация и здравоохранение, для которых природные воды являются оздоровительным фактором. Наиболее обеспечены водными ресурсами следующие страны: Бразилия (8 233 км3), Россия (4 508 км3), США (3 051 км3), Канада (2 902 км3), Индонезия (2 838 км3), Китай (2 830 км3), Колумбия (2 132 км3), Перу (1 913 км3), Индия (1 880 км3), Конго (1 283 км3), Венесуэла (1 233 км3), Бангладеш (1 211 км3), Бирма (1 046 км3).

23.

Основными источниками водоснабжения являются подземные воды и открытые водоемы. В некоторых случаях для питьевых целей может использоваться атмосферная вода (дождевая, снеговая) или морская, прошедшая процесс опреснения.

Подземные воды образуются при скоплении в почве просочившейся через нее воды. Скопление их происходит в слое водопроницаемых пород (песке, гравии, трещиноватом известняке), ниже которых располагается слой водоупорных пород (глины, гранита). Водонепроницаемые и водоупорные слои чередуются.

Подземные воды, находящиеся на первом от поверхности земли водоносном слое, называются грунтовыми. Глубина залегания грунтовых вод колеблется от 1—2 до нескольких десятков метров. Пройдя через почву, грунтовые воды начиная с 5—6 м обычно не содержат патогенных микробов. Однако если почва загрязняется различными нечистотами, то в грунтовые воды могут попасть микробы. Чем больше загрязнение почвы и чем ближе к поверхности расположены грунтовые воды, тем реальнее опасность их бактериального загрязнения.

Подземные воды, находящиеся в водоносном слое (горизонте), расположенном между двумя водонепроницаемыми слоями, называются межпластовымиводами. Если пробурить скважину в наклонно расположенном межпластовом горизонте, то вода в ней поднимается. Такие межпластовые воды, которые поднимаются выше уровня, где они были встречены при бурении, называются напорными или артезианскими. Межпластовые воды могут выходить на поверхность в виде родников.

Артезианские воды, проходя в почве длинный путь, фильтруются, освобождаются от микробов, обогащаются минеральными солями. Они отличаются прозрачностью, отсутствием взвешенных частиц, низкой температурой, постоянным минеральным составом. Артезианская вода является лучшим источником водоснабжения.

Однако при использовании артезианских вод нельзя полностью исключать опасность загрязнения. Его причиной могут быть трещины в земных породах, заброшенные шахты и др. Поэтому артезианские воды также нуждаются в систематическом санитарном контроле.

Открытые водоемы (пруды, озера, реки) образуются на поверхности земли при стекании атмосферной воды. Они могут также частично питаться подземными водами. Открытые водоемы обычно загрязняются сточными бытовыми и промышленными водами, атмосферной и талой водой. Однако в водоемах постоянно идут процессы самоочищения: разбавление сточных вод, осаждение взвешенных частиц, минерализация органических веществ, отмирание микробов и т. д. Скорость самоочищения зависит от степени загрязненности воды и величины водоема. При исчерпании возможностей самоочищения вода становится непригодной для питья, оздоровительных и хозяйственных нужд. Наибольшей способностью к самоочищению обладают полноводные реки, а возможности небольших и непроточных водоемов в этом отношении весьма ограничены.

Санитарные правила рекомендуют выбирать водоисточники для пользования в следующем порядке:

1) межпластовые напорные (артезианские) воды;

2) межпластовые безнапорные воды, в том числе родниковые; 3) грунтовые воды; 4) открытые водоемы.

24.

Несмотря на неуклонный рост потребления воды из-за быстрого увеличения численности народонаселения, главной проблемой стала не нехватка питьевой воды в большинстве стран мира, а прогрессирующее загрязнение рек, озер и подземных вод. Значительный рост промышленности привел к резкому увеличению объемов технических отходов, сбрасываемых в виде неочищенных или недостаточно очищенных сточных вод в водоемы

Основными источниками загрязнения водоемов являются:

1) атмосферные осадки, содержащие загрязняющие вещества промышленного происхождения, которые вымываются из атмосферы;

2) городские сточные воды (бытовые, канализационные стоки, содержащие вредные для здоровья синтетические моющие средства и др.);

3) промышленные сточные воды;

4) сельскохозяйственные сточные воды (отходы животноводческих комплексов, смыв с полей удобрений и пестицидов дождями и весенними талыми водами и др.).

Наиболее значимую долю загрязнения водоемов составляют промышленные сточные воды, половина объема которых (по данным отечественных природоохранных служб) сбрасывается в водоемы без очистки, а большая часть второй половины – в недостаточно очищенном виде. Поэтому почти все реки загрязнены нефтепродуктами, тяжелыми металлами, органическими и минеральными соединениями. Сельскохозяйственные сточные воды несут в реки и озера огромное количество удобрений и пестицидов. Сброс сточных вод в водоемы сопровождается накоплением загрязняющих веществ в донных осадках в больших концентрациях, что может приводить к резкому повышения уровня загрязнения в паводковых водах и к вторичному загрязнению, связанному с образованием новых (часто более вредных, чем исходные) химических соединений.В Финляндии почти 90% загрязняющих веществ поступает в водоемы со сточными водами от предприятий лесохимической промышленности и предприятий по производству удобрений. В США реки и прибрежные воды морей и океанов загрязнены нефтепродуктами и тяжелыми металлами; сильно загрязнена также система Великих озер.

Воздействие загрязнения водоемов на природные экосистемы. Очень опасны как для человека, так и биоты природных экосистем поступающие с бытовыми стоками синтетические моющие средства, которые благодаря вспениванию препятствуют поступлению кислорода в воду. Экологически опасны не только токсичные вещества, содержащиеся в сточных водах. Мелкодисперсные волокна, выбрасываемые предприятиями по производству строительных и других материалов, способны забивать дыхательные системы водных организмов и вызывать их гибель. Большую опасность для экосистем водоемов со стоячей водой представляет накопление в них органики, поступающей с сельскохозяйственными (и особенно животноводческими) стоками, содержащими биогенные элементы, в том числе азот и фосфор. В результате в водоеме развивается процесс эвтрофикации, т.е. повышения биологической продуктивности водных объектов вследствие накопления биогенных элементов, сопровождающейся так называемым цветением воды из-за массового размножения фитопланктона, сине-зеленых водорослей и высших водных растений. В результате вода становится непригодной для жизни.

25.

дной из важнейших проблем гигиены окружающей среды является соответствие воды водоемов требованиям действующего законодательства и санитарных правил и норм.

Эти требования изложены в ст. 18 Федерального Закона Р.Ф. "О санитарно – эпидемиологическом благополучии населения " № 52 Ф.З.

Критерии безопасности и безвредности для человека водных объектов изложены в санитарных правилах и нормах СанПиН 2.1.5.980-00 " Гигиенические требования к охране поверхностных вод", утвержденных главным государственным санитарным врачом Р.Ф. 22.06.2000г., в гигиенических нормативах ГН 2.1.5.1315-03 "Предельно допустимые концентрации (ПДК) химических веще6ств в воде водных объектов хозяйственно- питьевого и культурно- бытового водопользования", в гигиенических нормативах ГН 2.1.5. 1316-03 "Ориентировочные допустимые уровни (ОДУ) химических веществ в воде водных объектов хозяйственно- питьевого и культурно- бытового водопользования", утвержденных главным государственным санитарным врачом Р.Ф. 22.06.2000г

Обязанности администрации предприятий по проведению производственного контроля соблюдения требований санитарных норм и правил изложены в санитарных правилах СП 1,1,1058-01 "Организация и проведение производственного контроля за соблюдением санитарно – противоэпидемических (профилактических) мероприятий" Водные объекты не должны являться источником биологических, химических или физических факторов вредного воздействия на человека.

Разрешение на использование водного объекта для хозяйственно- питьевого и культурно- бытового водопользования допускается при наличии санитарно- эпидемиологического заключения о соответствии его воды требованиям санитарных правил и соблюдении условий безопасности для здоровья человека использования этого объекта.

В случае несоответствия водного объекта требованиям санитарных норм и правил органы власти, предприниматели и юридические лица обязаны принять меры к ограничению, приостановлению или запрещению использования объекта.

В целях охраны водных объектов от загрязнения не допускается сбрасывать в водные объекты сточные воды, которые: могут быть устранены путем организации малоотходных производств, рациональной технологии, максимального использования в системах оборотного и повторного водоснабжения; после соответствующей очистки могут быть использованы в промышленности, городском хозяйстве или для орошения в сельском хозяйстве; содержат возбудителей инфекционных заболеваний,; содержат вещества, для которых не установлены гигиенические предельно допустимые концентрации или ориентировочно допустимые уровни, а так же отсутствуют методы их определения; содержат чрезвычайно опасные вещества, для которых нормативы установлены с пометкой "отсутствие". Не допускается сброс промышленных, сельскохозяйственных, городских сточных вод , а так же организованный сброс ливневых сточных вод: в пределах первого пояса зон санитарной охраны источников хозяйственно- питьевого водоснабжения; в черте населенных пунктов; в пределах первого и второго поясов округов санитарно охраны курортов, в местах туризма, спорта и массового отдыха населения; в водные объекты , содержащие природные лечебные ресурсы; в пределах второго пояса зон санитарной охраны источников хозя1йственно- питьевого водоснабжения, если содержание в них загрязняющих веществ и микроорганизмов превышает установленные санитарными правилами гигиенические нормативы.

Сточные воды, которые технически невозможно использовать в системах повторного, оборотного водоснабжения в промышленности, городском хозяйстве, для орошения в сельском хозяйстве и для других целей, допускается отводить в водные объекты после очистки в соответствии с требованиями санитарных правил к санитарной охране водных объектов и соблюдения нормативов качества воды в пунктах водопользования.

Предоставление отдельных водоемов, водотоков или их участков в обособленное водопользование для конкретных хозяйственных целей, в т.ч. для охлаждения подогретых вод (пруды - охладители), создание лесотоварных баз и др. производится только вне I - II поясов зоны санитарной охраны источников.

Отведение поверхностного стока с промышленных площадок и жилых зон через дождевую канализацию должно исключать поступление в нее хозяйственно - бытовых, производственных сточных вод и промышленных отходов. К отведению поверхностного стока в водные объекты предъявляются такие же требования, как к сточным водам.

Санитарными правилами установлены гигиенические нормативы качества - состава и свойств - воды в водных объектах для двух категорий водопользования:

К первой категории водопользования относится использование водных объектов или их участков в качестве источника питьевого и хозяйственно - бытового водопользования, а также для водоснабжения предприятий пищевой промышленности.

Ко второй категории водопользования относится использование водных объектов или их участков для рекреационного водопользования. Требования к качеству воды, установленные для второй категории водопользования, распространяются также на все участки водных объектов, находящихся в черте населенных мест.

Соблюдение санитарных правил обязательно при размещении, проектировании, вводе в эксплуатацию и эксплуатации хозяйственных или других объектов и проведении любых работ, способных оказать влияние на качество воды водных объектов.

Строительство очистных сооружений допускается по проектам, имеющим заключение органов и учреждений государственной санитарно- эпидемиологической службы об их соответствии санитарным нормам и правилам.

Сброс сточных и дренажных вод в черте населенных мест через существующие выпуски допускается лишь в исключительных случаях при соответствующем технико - экономическом обосновании и по согласованию с органами государственной санитарно - эпидемиологической службы. В этом случае нормативные требования, предъявленные к составу и свойствам сточных вод, должны соответствовать требованиям, предъявляемым к воде водных объектов питьевого, хозяйственно - бытового и рекреационного водопользования.

Для объектов, сбрасывающих сточные воды, устанавливаются нормативы предельно допустимых сбросов веществ в водные объекты (ПДС), которые утверждаются специально уполномоченными органами по охране окружающей природной среды только после согласования с органами и учреждениями государственной санитарно - эпидемиологической службы.

Временно допустимые сбросы (ВДС) химических веществ, устанавливаемые для действующих предприятий на период осуществления мер по достижению ПДС (на срок не более 5 лет), не должны создавать в расчетном створе концентрации, превышающие их максимально недействующие концентрации (МНК) по санитарно -токсикологическому признаку вредности.

26.

Вода – важнейший фактор формирования внутренней среды организма и в то же время один из факторов внешней среды. Там, где нет воды, нет жизни. В воде происходят все процессы, характерные для живых организмов, населяющих нашу Землю. Недостаток воды (дегидратация) приводит к нарушению всех функций организма и даже гибели. Уменьшение количества воды на 10 % вызывает необратимые изменения. Тканевой обмен, процессы жизнедеятельности протекают в водной среде.

Вода принимает активное участие в так называемом водно-солевом обмене. Процессы пищеварения и дыхания протекают нормально в случае достаточного количества воды в организме. Велика роль воды и в выделительной функции организма, что способствует нормальному функционированию мочеполовой системы.

Вода – это универсальный растворитель. Она растворяет все физиологически активные вещества. Вода – это жидкая фаза, имеющая определенную физическую и химическую структуру, которая и определяет ее способность как растворителя. Живые организмы, потребляющие воду с разной структурой, развиваются и растут по-разному. Поэтому структуру воды можно рассматривать как важнейший биологический фактор. Структура воды может изменяться при ее опреснении. На структуру воды в значительной степени влияет ионный состав воды.

Молекула воды – соединение не нейтральное, а электрически активное. Она имеет два активных электрических центра, которые создают вокруг себя электрическое поле.

Для строения молекулы воды характерны две особенности:

1) высокая полярность;

2) своеобразное расположение атомов в пространстве.

Молекулы воды могут существовать в следующих формах:

1) в виде одиночной молекулы воды – это моногид-роль, или просто гидроль (Н2О)1;

2) в виде двойной молекулы воды – это дигидроль (Н2О)2;

3) в виде тройной молекулы воды – тригидроль (Н2О)3.

В зависимости от динамического равновесия между формами различают определенные виды воды.

1. Вода, связанная с живыми тканями, – структурная (льдоподобная, или совершенная, вода), представленная квазикристаллами, тригидролями. Эта вода отличается высокой биологической активностью. Температура ее замерзания —20 °C. Такую воду организм получает только с натуральными продуктами.

2. Свежеталая вода – на 70 % льдоподобная вода. Обладает лечебными свойствами, способствует повышению адаптогенных свойств, но быстро (через 12 ч) теряет свои биологические свойства стимулировать биохимические реакции в организме.

3. Свободная, или обычная, вода. Температура ее замерзания равна 0 °C.

27.

Благоприятные органолептические свойства воды определяются ее соответствием нормативам а также нормативам содержания веществ, оказывающих влияние на органолептические свойства воды Не допускается присутствие в питьевой воде различимых невооруженным глазом водных организмов и поверхностной пленки.

Показатели

Единицы измерения

Нормативы, не более

Запах

Баллы

2

Привкус

Баллы

2

Цветность

Градусы

20

Мутность

ЕМФ (единицы мутности по формазину) или мг/л (по каолину)

2,6 или

1,5

28

Безвредность и опасность воды в отношении санитарно-токсикологических показателей химического состава определяется СанПин 2.1.4.1074-01 регламентирует показатели, характеризующие безопасность химического состава воды по:

1) содержанию вредных химических веществ, наиболее часто встречающихся в природных водах на территории РФ, а также веществ антропогенного происхождения, получивших глобальное распространение;

Среди наиболее часто встречающихся в природных водах химических веществ выделяю 2 вида веществ: а) органического и б) неорганического происхождения.

Органические: Линдан, ДДТ (сумма изомеров).

К неорганическим веществам относят:

Санитарно-токсикологическому показателю вредности

Органолептическому показателю вредности

Алюминий (ПДК 0,5 мг/л)

Железо (ПДК 0,3 мг/л)

Барий (ПДК 0,1 мг/л)

Марганец (ПДК 0,1 мг/л)

Бериллий (ПДК 0,002 мг/л)

Медь (ПДК 1 мг/л)

Бор (ПДК 0,5 мг/л)

Сульфат (ПДК 500 мг/л)не более

Кадмий (ПДК 0,001 мг/л)

Нитраты (ПДК 45 мг/л)не более

Молибден (ПДК 0,25 мг/л)

Хлориды (ПДК 350 мг/л)не более

Мышьяк (ПДК 0,05 мг/л)

Цинк (ПДК 5 мг/л)

Никель (ПДК 0,1 мг/л)

Ртуть (ПДК 0,0005 мг/л)

Свинец (ПДК 0,03 мг/л)

Селен (ПДК 0,01 мг/л)

Стронций (ПДК 7 мг/л)

Фториды (ПДК 1,5 мг/л)для 1,2 климатич района (ПДК 1,2 мг/л)-для 3-го

Хром(ПДК 0,05 мг/л)

Цианиды(ПДК 0,035 мг/л)

2) содержанию вредных химических веществ, поступивших и образующихся в воде в процессе ее обработки в системе водо­снабжения;

Показатели

Единицы измерения

ПДК

Показатели вредности

Класс опасности

Хлор

А)остаточный свободный

Б)остаточный связанный

Мг/л

В пределах

0,3-0,5

В пределах

0,8-1,2

органолептический

3

Хлороформ (при хлорировании воды)

Мг/л

0,22

Санитарно-токсикологический

2

Озон остаточный

Мг/л

0,3

органолеп

нет

Формальдегид (при озонировании воды)

Мг/л

0,05

Санитарно-токсик

2

Полиакриламид

Мг/л

2,0

Санитарно-токсикол

2

Активированная кремнекислота

Мг/л

10,0

Санитарно-токсикол

2

Полифосфаты

Мг/л

3,5

Органолепт

3

3) содержанию вредных химических веществ, поступивших в источники водоснабжения в результате хозяйственной деятель­ности человека.

Относится более 1200 химических соединений.

Под ПДК понимают максимальную концентрацию, при которой вещество не оказывает прямого или опосредованного влияния на состояние здоровья человека (при воздействии на организм в течение всей жизни) и не ухудшает условий гигиенического водопотребления. Лимитирующим признаком вредности химического вещества в воде, по которому установлен норматив (ПДК), может быть санитарно-токсикологический, или органолептический. Для ряда веществ в водопроводной воде имеются ОДУ (ориентировочные допустимые уровни) веществ в водопроводной воде, разработанные на основе расчетных или экспериментальных методов прогноза точности.

Классы опасности веществ делят на:

1) 1 класс – чрезвычайно опасные;

2) 2 класс – высокоопасные;

3) 3 класс – опасные;

4) 4 класс – умеренно опасные.

При обнаружении в питьевой воде нескольких химических веществ, нормированных по токсикологическому признаку вредности и относящихся к 1-му и 2-му (чрезвычайно и высокоопасному) классу опасности, исключая РВ, сумма отношений обнаруженных концентраций каждого из них к их максимально допустимому содержанию (ПДК) не должна быть более 1 для каждой группы веществ, характеризующихся более или менее однонаправленным воздействием на организм. Расчет ведется по формуле:

(С1факт / С1доп) + (С2факт / С2доп) + … + (Сnфакт / Сnдоп)J1,

где С1, С2, Сn – концентрации индивидуальных химических веществ;

Сфакт – концентрации фактические;

Сдоп – концентрации допустимые. Особое внимание следует обратить на этап хлорирования в процессе водоподготовки. Наряду с обеззараживанием хлорирование может приводить и к насыщению хлором органических веществ с образованием продуктов гелогенезирования. Эти продукты трансформации в ряде случаев могут быть более токсичными, чем исходные, присутствующие на уровне ПДК химических веществ.

Для оценки безопасности питьевой воды по хим.составу проводят отбор проб на концентрации химических веществ, влияющих на свойства воды.

В результате лаб.исследования состава воды делают заключение о гигиеническом соответствии или несоответствии требованиям, предъявляемые к химическому составу воды.

Если в воде обнаруживается аммиак-значит загрязнение воды свежее.

Если нитраты и нитриты-давнее загрязнение.

А если все перечисленные-постоянное.

Определение водородного показателя:

Выполняют с помощью индикаторной бумаги или на рН-метре. В 1-м случае полоска индик бумаги погружается в пробирку с водой на 10-15 с, затем сравниваем с цветной шкалой, прилагаемой к универсальному индикатору. Диапазон измерения рН от 1,0 до 10,0,точность измерения-единица.

Более точные показания получаем с помощью рН-метра. Исследуемая вода наливается в 100-миллилитровый стаканчик, в кот погружаются шкалы электроды рН-метра. Показания снимают с той шкалы прибора,на кот он настроен. Сравниваем с нормат величиной.

Определение Железа.

В мерную колбу на 50 мл наливаем 30 мл исследуем воды и добавляем 1 мл концентриров соляной кислоты и неск кристаллов персульфата аммония,перемешиваем +1 мл раствора роданида аммония и доводим до метки исследуемой водой.

Параллельно ставят «холостую» пробу, где вместо исслед воды-дистиллиров. Измеряют оптическую плотность по отношению к «холостой» пробе на фотоколориметре.

Определение жесткости.

В коническую колбу емкостью 250 мл наливают 100 мл исследуемой воды + 5 мл буферного раствора + 5-7 капель спиртового раствора индикатора эрихрома черного. Образ красно-вишнев окраска. Титруют при взбалтывании 0,05 н раствором трилона Б до появл сине-зелен окраски.

НЕ ПОНЯЛА ЧТО ЗА ФОРМУЛА!!!!!!

Определение остаточного хлора в водопроводной водеО.

В коническую колбу вместимостью 500 мл вносят 250 мл водопроводной воды, 10 мл буферного раствора с рН 4,6 и 5 мл 10% раствора йодида калия. Выделившийся йод титруют 0,005 н раствором тиосульфата натрия до бледно-жел окраски. Затем + 1 мл 1% раствора крахмала и титруют раствор до исчезновения синей окрас.

Х=n*K*0,177*1000/V (мг)

n-кол-во 0,005 н раствора тиосульфата натрия, пошедшего на титрование, мл.

К-поправочный коэффициент раствора тиосульфата натрия.

0,177-кол-во активного хлора, соответствующее 1мл 0,005 н раствора тиосульфата натрия, мг.

V-объем воды, взятой для анализа,мл.

29.

Эпидемиологическое значение воды.

Вода играет большую роль в распространении инфекционных забо­леваний, то есть может быть опасной в эпидемическом отношении.

Водный путь передачи наиболее характерен для следующих заболе­ваний:

Соседние файлы в предмете Гигиена