
- •1 Проверка трансформаторов тока по кривым 10% погрешности тт.
- •2 Принцип действия и выбор уставок дифференциальной защиты трансформаторов.
- •8 Виды повреждений, какие причины приводят к повреждениям и ненормальным режимам работы электрических сетей.
- •3 Общие понятия о релейной защите. Назначение релейной защиты.
- •4 Принцип действия направленной поперечной дифференциальной защиты линий.
- •7 Основные требования, предъявляемые к элементам релейной защиты
- •5 Факторы, влияющие на величину тока небаланса в реле дифференциальной токовой защиты трансформатора.
- •6 Поясните схему замещения трансформаторов тока. Маркировка т.Т.
- •9 Схемы соединений трансформаторов тока. Коэффициент схемы.
- •10 Контроль изоляции. Трансформатор тока нулевой последовательности
- •11 Принцип действия электромеханических реле, понятие коэффициента возврата
- •12 Принцип действия максимальной токовой защиты трансформаторов.
- •13 Как рассчитать ток небаланса в дифференциальной защите трансформатора?
- •14 Работа электромагнитного реле на переменном токе. (рп-25)
- •15 Расскажите порядок расчета продольной дифференциальной защиты трансформатора.
- •16 Как осуществляется приблизительное выравнивание вторичных токов при неравенстве первичных токов силовых трансформаторов в расчете дифференциальной защиты трансформатора?
- •17 Трансформатор напряжения.
- •18. Принцип действия промежуточного реле с задержкой на срабатывание.
- •19. Источники оперативного тока
- •20. Назначение и принцип действия дистанционной защиты
- •21. Виды повреждений, какие причины приводят к повреждениям и ненормальным режимам работы электрических сетей
- •22. Назначение и схемы соединений тн
- •23. Особенности работы реле на переменном токе рп-25
- •24. Как осуществляется компенсация сдвига токов по фазе в дифференциальной защите трансформаторов?
- •27. Выбор уставок дистанционной защиты линий
- •28. Назначение промежуточного реле
- •29. Расчет уставок для токовой защиты с блокировкой по напряжению
- •30. Поясните назначение и принцип действия защиты трансформатора
- •31. Селективность работы токовых направленных защит при двухстороннем питании.
- •32. Принцип действия дифференциального реле типа рнт-565
- •33. Расчет уставок мтз с пуском (блокировкой) от реле минимального напряжения особенности по сравнению с простой мтз?
- •47. Работа реле времени и реле указательного.
- •46.Причины возникновения вибрации контактов и способы их устранения.
- •45. Принцип действия и выбор уставок токовых отсечек.
- •44 Время-токовая характеристика индукционного реле.
- •42.Принцип выполнения защиты от замыканий на землю в сетях с изолированной нейтралью.
- •43 Принцип действия направленной поперечной дифференциальной защиты линий
- •41 Реле мощности и его характеристики.
- •40 Принцип действия продольной дифференциальной защиты линий.
- •39.Принцип действия, выбор уставок защиты от замыканий на землю в сетях с глухозаземленнойнейтралью.
- •38.Причины возникновения вибрации контактов и способы их устранения.
- •37 Продольная дифференциальная защита лэп.
- •36 Принцип действия дифференциального реле типа дзт
- •35 Назначение и принцип действия дистанционной защиты линий.
- •34 Принцип действия и выбор уставок м.Т.З.
- •48)Токовая отсечка в сетях с двухсторонним питанием.
- •49_)Принцип действия и выбор уставки токовой отсечки трансформатора и электродвигателя. В чем их отличие?
- •50) Принцип действия и выбор уставок поперечной дифференциальной. Защиты линий.
- •52) Какие типы защиты используются при защите силовых трансформаторов.
- •54. Неселективные отсечки, отсечки с выдержкой времени
- •55. Продолная дифзащита линии, ее принцип действия
- •56. Принцип действия поперечных дифференциальных защит лэп, расчет уставок
- •58Каковы допустимые погрешности тт и что влияет на их величину.
- •59 Как осуществляется компенсация сдвига тока по фазе при расчете дифзащиты трансформатора
- •60Основные требования предьявляемые к элементам рз
- •61Виды повреждений, какие причины приводят к повреждениям и ненорм режимам работы эл сети
- •62 Факторы, влияющие на величину тока небаланса в реле дтз транс-ра
- •63)Направленная токовая защита
- •64) Принцип действия промежуточного реле с задержкой на срабатывание
- •65)Схема соединения трансформаторов тока. Коэффициент схемы
- •66) Как расчитать ток не баланса в диференциальной защите трансформатора
- •67)Поясните назначение и принцип действе защит трансформаторов
- •68. Поясните назначение и принцип действия защит трансформатора
- •69.Источники оперативного тока
- •70 Назначение промежуточного реле
- •71. Назначение и принцип действия дистанционной защиты
- •72. Принцип действия индукционного реле направления мощности
- •73. Расчет уставок для токовой защиты с блокировкой по напряжению (29 вопрос такой же)
- •74 . Принцип действия и выбор уставок мтз(34 вопрос такой же)
- •75. Назначение и принцип действия дистанционной защиты линии(35 вопрос такой же)
- •76. Причины возникновения вибрации контактов и способы их устранения(46 вопрос такой же)
- •77. Принцип работы и регулирование тока срабатывания реле рт-40
- •78) Какие типы защиты используются при защите силовых трансформаторов.
- •80 .Принцип действия электромеханических реле, понятие коэффициента возврата
- •81 Принцип действия продольной дифференциальной защиты линий.
- •83.Перечислите основные требования, предъявляемые к элементам рз.
- •85. Источники оперативного тока.
- •86.Назначение и принцип действия дистанционной защиты.
- •87.Продольная дифференциальная защита лэп.
- •88Защита нулевой последовательности для сетей с изолированной нейтралью
- •89 Факторы, влияющие на величину тока небаланса в реле диф токовой защиты трасформаторы
- •90 Направленная токовая защита
- •91 Общие понятия о релейной защите. Назначение релейной защиты.
- •92 Продольная дифференциальная защита лэп
- •93 Проверка трансформаторов тока по кривым 10% погрешности тт.
- •94 Принцип действия и выбор уставок дифференциальной защиты трансформаторов.
89 Факторы, влияющие на величину тока небаланса в реле диф токовой защиты трасформаторы
Принцип действия продольной дифференциальной защиты основан на сравнении токов, протекающих через участки между защищаемым участком линии (или защищаемом аппаратом). Для измерения значения силы тока на концах защищаемого участка используются трансформаторы тока(TA1, TA2). Вторичные цепи этих трансформаторов соединяются с токовым реле(KA) таким образом, чтобы на обмотку реле попадала разница токов от первого и второго трансформаторов.
В реальном случае через обмотку токового реле всегда будет протекать ток отличный от нуля, называемый током небаланса. Наличие тока небаланса объясняется рядом факторов:
Трансформаторы тока имеют недостаточно идентичные друг другу характеристики. Чтобы снизить влияние этого фактора, трансформаторы тока, предназначенные для дифференциальной защиты, изготавливают и поставляют попарно, подгоняя их друг к другу еще на стадии производства.
Некоторое влияние на возникновение тока небаланса может оказывать намагничивающий ток, возникающий в обмотках защищаемого трансформатора. В нормальном режиме этот ток может достигать 5 % от номинального. При некоторых переходных процессах, например при включении трансформатора с холостого хода под нагрузку, ток намагничивания на короткое время может в несколько раз превышать номинальный ток.
Неодинаковое соединение обмоток первичной и вторичной стороны защищаемого трансформатора (например, при соединении обмоток Y/Δ) так же влияет на возникновение тока небаланса. В данном случае во вторичной цепи защищаемого трансформатора вектор тока будет смещён относительно тока в первичной цепи на 30°. Подобрать такое число витков у трансформаторов тока, которое позволило бы компенсировать эту разницу, невозможно. В этом случае угловой сдвиг компенсируют с помощью соединения обмоток: на стороне звезды обмотки трансформаторов тока соединяют треугольником, а на стороне треугольника соответственно звездой.
Дифференциальная защита силового трансформатора
90 Направленная токовая защита
Необходимость применения направленных токовых защит возникает в сетях с двухсторонним питанием линий. Применение простых токовых защит в этом случае не может обеспечить правильной работы устройств РЗА, так как токи КЗ (короткого замыкания) могут иметь различное направление относительно шин подстанций.
Обратимся к рисунку: при повреждении в точке К1 ток КЗ будет протекать с шин ПС/2 и ПС/3 в точку замыкания.
При этом, защиты 4 и 5 должны своевременно отключить Л-2. Однако на шинах этих же подстанций расположены защиты 3 и 6, которые не должны действовать, так как это приведет к излишнему отключению Л1 и Л3.
Избирательную работу защит в этом случае обеспечивает орган направления мощности, который сравнивает фазу напряжения и тока КЗ Направление тока от шин в линию считается условно положительным, в этом случае реле мощности разрешает отключать контролируемый участок.
Направление из линии в шины считается условно отрицательным, происходит пуск защит, но команда не реализуется, поскольку реле мощности не работает на отключение.
Так как направленная защита должна реагировать не только на величину, но и на направление тока КЗ, применяют реле мощности включаемое по приведенной ниже схеме.
Токовое реле Т (типа РТ) реагирует на возрастание тока в сети. Реле мощности М является органом контролирующим направление мощности при КЗ в сети. Момент срабатывания реле мощности напрямую зависит от мощности Sp, подведенной к зажимам реле:
Sp=UpIpsin(α–φp); (1)
где Up – вторичный сигнал ТН, пропорциональный величине первичного напряжения сети в момент КЗ. Отражает не только величину, но и фазу напряжения; Ip – вторичный сигнал ТТ, пропорционален току и фазе тока КЗ. α - угол внутреннего сдвига реле. Зависит от схемы подключения реле на фазные токи и напряжения контролируемой сети; φp – сдвиг фаз между током и напряжением на зажимах реле.