- •1 Проверка трансформаторов тока по кривым 10% погрешности тт.
- •2 Принцип действия и выбор уставок дифференциальной защиты трансформаторов.
- •8 Виды повреждений, какие причины приводят к повреждениям и ненормальным режимам работы электрических сетей.
- •3 Общие понятия о релейной защите. Назначение релейной защиты.
- •4 Принцип действия направленной поперечной дифференциальной защиты линий.
- •7 Основные требования, предъявляемые к элементам релейной защиты
- •5 Факторы, влияющие на величину тока небаланса в реле дифференциальной токовой защиты трансформатора.
- •6 Поясните схему замещения трансформаторов тока. Маркировка т.Т.
- •9 Схемы соединений трансформаторов тока. Коэффициент схемы.
- •10 Контроль изоляции. Трансформатор тока нулевой последовательности
- •11 Принцип действия электромеханических реле, понятие коэффициента возврата
- •12 Принцип действия максимальной токовой защиты трансформаторов.
- •13 Как рассчитать ток небаланса в дифференциальной защите трансформатора?
- •14 Работа электромагнитного реле на переменном токе. (рп-25)
- •15 Расскажите порядок расчета продольной дифференциальной защиты трансформатора.
- •16 Как осуществляется приблизительное выравнивание вторичных токов при неравенстве первичных токов силовых трансформаторов в расчете дифференциальной защиты трансформатора?
- •17 Трансформатор напряжения.
- •18. Принцип действия промежуточного реле с задержкой на срабатывание.
- •19. Источники оперативного тока
- •20. Назначение и принцип действия дистанционной защиты
- •21. Виды повреждений, какие причины приводят к повреждениям и ненормальным режимам работы электрических сетей
- •22. Назначение и схемы соединений тн
- •23. Особенности работы реле на переменном токе рп-25
- •24. Как осуществляется компенсация сдвига токов по фазе в дифференциальной защите трансформаторов?
- •27. Выбор уставок дистанционной защиты линий
- •28. Назначение промежуточного реле
- •29. Расчет уставок для токовой защиты с блокировкой по напряжению
- •30. Поясните назначение и принцип действия защиты трансформатора
- •31. Селективность работы токовых направленных защит при двухстороннем питании.
- •32. Принцип действия дифференциального реле типа рнт-565
- •33. Расчет уставок мтз с пуском (блокировкой) от реле минимального напряжения особенности по сравнению с простой мтз?
- •47. Работа реле времени и реле указательного.
- •46.Причины возникновения вибрации контактов и способы их устранения.
- •45. Принцип действия и выбор уставок токовых отсечек.
- •44 Время-токовая характеристика индукционного реле.
- •42.Принцип выполнения защиты от замыканий на землю в сетях с изолированной нейтралью.
- •43 Принцип действия направленной поперечной дифференциальной защиты линий
- •41 Реле мощности и его характеристики.
- •40 Принцип действия продольной дифференциальной защиты линий.
- •39.Принцип действия, выбор уставок защиты от замыканий на землю в сетях с глухозаземленнойнейтралью.
- •38.Причины возникновения вибрации контактов и способы их устранения.
- •37 Продольная дифференциальная защита лэп.
- •36 Принцип действия дифференциального реле типа дзт
- •35 Назначение и принцип действия дистанционной защиты линий.
- •34 Принцип действия и выбор уставок м.Т.З.
- •48)Токовая отсечка в сетях с двухсторонним питанием.
- •49_)Принцип действия и выбор уставки токовой отсечки трансформатора и электродвигателя. В чем их отличие?
- •50) Принцип действия и выбор уставок поперечной дифференциальной. Защиты линий.
- •52) Какие типы защиты используются при защите силовых трансформаторов.
- •54. Неселективные отсечки, отсечки с выдержкой времени
- •55. Продолная дифзащита линии, ее принцип действия
- •56. Принцип действия поперечных дифференциальных защит лэп, расчет уставок
- •58Каковы допустимые погрешности тт и что влияет на их величину.
- •59 Как осуществляется компенсация сдвига тока по фазе при расчете дифзащиты трансформатора
- •60Основные требования предьявляемые к элементам рз
- •61Виды повреждений, какие причины приводят к повреждениям и ненорм режимам работы эл сети
- •62 Факторы, влияющие на величину тока небаланса в реле дтз транс-ра
- •63)Направленная токовая защита
- •64) Принцип действия промежуточного реле с задержкой на срабатывание
- •65)Схема соединения трансформаторов тока. Коэффициент схемы
- •66) Как расчитать ток не баланса в диференциальной защите трансформатора
- •67)Поясните назначение и принцип действе защит трансформаторов
- •68. Поясните назначение и принцип действия защит трансформатора
- •69.Источники оперативного тока
- •70 Назначение промежуточного реле
- •71. Назначение и принцип действия дистанционной защиты
- •72. Принцип действия индукционного реле направления мощности
- •73. Расчет уставок для токовой защиты с блокировкой по напряжению (29 вопрос такой же)
- •74 . Принцип действия и выбор уставок мтз(34 вопрос такой же)
- •75. Назначение и принцип действия дистанционной защиты линии(35 вопрос такой же)
- •76. Причины возникновения вибрации контактов и способы их устранения(46 вопрос такой же)
- •77. Принцип работы и регулирование тока срабатывания реле рт-40
- •78) Какие типы защиты используются при защите силовых трансформаторов.
- •80 .Принцип действия электромеханических реле, понятие коэффициента возврата
- •81 Принцип действия продольной дифференциальной защиты линий.
- •83.Перечислите основные требования, предъявляемые к элементам рз.
- •85. Источники оперативного тока.
- •86.Назначение и принцип действия дистанционной защиты.
- •87.Продольная дифференциальная защита лэп.
- •88Защита нулевой последовательности для сетей с изолированной нейтралью
- •89 Факторы, влияющие на величину тока небаланса в реле диф токовой защиты трасформаторы
- •90 Направленная токовая защита
- •91 Общие понятия о релейной защите. Назначение релейной защиты.
- •92 Продольная дифференциальная защита лэп
- •93 Проверка трансформаторов тока по кривым 10% погрешности тт.
- •94 Принцип действия и выбор уставок дифференциальной защиты трансформаторов.
54. Неселективные отсечки, отсечки с выдержкой времени
Неселективной отсечкой называется мгновенная отсечка, действующая при КЗ за пределами своей ЛЭП. Такая отсечка применяется для быстрого отключения КЗ в пределах всей защищаемой ЛЭП. Неселективное действие отсечки при КЗ вне ЛЭП исправляется при помощи АПВ, включающего обратно отключившуюся ЛЭП. Примеры применения неселективной отсечки приведены на рис. 5.5.
В первом случае на линии W1 (рис. 5.5, а) установлена отсечка 1, неселективная по отношению к РЗ трансформаторов. Ток срабатывания отсечки 1 отстраивается от конца зоны отсечек 2 и 3, установленных на трансформаторах Т2 и ТЗ, т. е. Ic.з = (1,1 - 1,2)Iс.з2 (или Iс.з3).
При КЗ в каком-либо трансформаторе, например ТЗ, в пределах зоны действия отсечки 1 последняя срабатывает неселективно одновременно с отсечкой поврежденного трансформатора. В результате этого, кроме трансформатора ТЗ, неселективно отключается W1. При этом пускается устройство АПВ, которое включает обратно неселективно отключившуюся ЛЭП W1 и восстанавливает питание подстанции В.
Во
втором случае (рис. 5.5, б) на W1
для той же цели установлена отсечка
1, неселективная относительно мгновенной
отсечки 2 ЛЭП W2.
Отсечка 1 отстроена по току от конца
зоны действия отсечки 2, но поскольку
их выдержки времени одинаковы (t1
= t2
= 0), то при КЗ на участке ЛЭП W2,
где зоны действия отсечек совпадают,
обе они могут сработать одновременно.
Действием АПВ и в этом случае неповрежденная
линия W1
будет включена в работу, а поврежденная
W2
отключится вновь. Для предотвращения
повторного отключения W1
ее отсечка выводится из работы после
действия АПВ и спустя некоторое время
после успешного включения W1.
При этом должно быть соблюдено условие
tАПВ1
< tАПВ3,
где tАПВ1
и tAПВ3
соответственно
выдержки времени АПВ ЛЭП W1
и W2.

Отсечки с выдержкой времени
Мгновенная отсечка
защищает только часть ЛЭП; чтобы
выполнить РЗ всей ЛЭП с минимальным
временем действия, применяется отсечка
с выдержкой времени (см. рис. 5.2, б). Зона
и время действия такой отсечки 1 (рис.
5.7, о, б) согласуются с зоной и временем
действия мгновенной отсечки 2 так, чтобы
была обеспечена селективность.
Для выполнения
этих условий время действия РЗ t31
отсечки 1 выбирается на ступень
t
больше t32
отсечки 2: t31
= t32
+
t.
(5.5)
В
зависимости от точности реле времени
отсечки 1t3
= 0,3
0,6
с. Зона действия отсечки 1 должна быть
короче зоны работы отсечки 2 (рис. 5.7,
в).
В сети с односторонним питанием согласование зон действия РЗ 1 и 2 обеспечивается при выполнении условия
Ic..з1
= kотсIс.з2,
(5,6) где kOTC
= 1,1
1,2.
Зона действия отсечки 1 (AN
на рис. 5.7, а) находится графически.
В сети с двусторонним
питанием токи IК1
и IК2,
проходящие через отсечки 1 и 2, неодинаковы
(рис. 5.8): IК2
> IК1.
С учетом этого согласование зон действия
отсечек 1 и 2 выполняется обычно
графическим способом. Для этой цели
(рис. 5.8) строится зависимость IК1
и IK2
от расстояния l
до точки КЗ.
По пересечению прямой Iс.з2 с кривой IК2 (точка М) определяется конец зоны действия отсечки 2. От точки М необходимо отстроить отсечку 1. Для этого по кривой IК1 находится ток IК1М, проходящий в РЗ 1 при КЗ в конце зоны отсечки 2 (точка М).
В соответствии с условием (5.2): Iс.з1 = kотсIк1(М) . (5.6a)
Расчет ведется при максимальном IК1 и минимальном IК2 значениях. Ток Iс.з должен быть также отстроен от IкA при КЗ на шинах подстанции А. Зона действия отсечки определяется по точке пересечения Ic.з1 и IК1. Схемы отсечки с выдержкой времени выполняются так же, как и схемы МТЗ с независимой характеристикой (4.2).
Токовые отсечки являются самой простой РЗ. Быстрота действия в сочетании с простотой схемы составляет важное преимущество этих РЗ. Недостатками отсечек являются: неполный охват защищаемой ЛЭП и непостоянство зоны действия в связи с изменением режима энергосистемы.
Сочетая МТЗ 1 с мгновенной отсечкой 3 и отсечкой с выдержкой времени 2, можно получить трехступенчатую МТЗ, обеспечивающую быстрое отключение повреждений на защищаемой линии W1 и резервирующую РЗ 4 и 5 следующего участка. Характеристика времени действия трехступенчатой МТЗ показана на рис. 5.9.
