Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
диплом готово+.doc
Скачиваний:
788
Добавлен:
01.05.2015
Размер:
1.88 Mб
Скачать

1.8 Цели и задачи исследования

В данном дипломном проекте необходимо решить и исследовать следующие задачи:

- выбрать систему электропривода насосных станций и рассчитать ее параметры

- рассчитать нагрузки механизмов установки

- произвести предварительный расчет мощности электродвигателя и его выбор

- исследовать требования к автоматизированному электроприводу и системе управления насосной установки и обосновать выбор системы электропривода

- произвести расчет элементов электропривода, преобразователя и устройств автоматизации,

- исследовать модель частотного электропривода в среде MATLAB.

2 Выбор систем электропривода насосных станций и расчет его параметров

2.1 Структура частотного преобразователя

Большинство  современных  преобразователей частоты построено по схеме двойного преобразования.  Они  состоят из следующих основных частей:  звена  постоянного  тока  (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.       Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра.  Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.        Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.      В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.

2.2 Принцип работы преобразователя частоты

Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора , системы  управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв (рисунок 2.1).  Регулирование выходной частоты fвых. и напряжения  Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.

Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя

Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.

Рисунок 2.1 - Преобразователь частоты

Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рисунок 2.2). Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодули-рована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.  Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным  (АР) за счет изменения входного напряжения Uв  и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.

Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.

Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения. Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором.

Рисунок 2.2 - Форма кривой выходного напряжения

На рисунке 2.3 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.

Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.

И – трехфазный мостовой инвертор; В – трехфазный мостовой выпрямитель;

Сф – конденсатор фильтра.

Рисунок 2.3 - 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах

За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв  преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.

2.3 Оценка влияния преобразователя частоты на питающую сеть. Вопросы качества электроэнергии

Вопросам качества электрической энергии в последние несколько лет уделяется очень большое внимание. Электрическая энергия используется во всех сферах жизнедеятельности человека, обладает совокупностью специфических свойств и непосредственно участвует в создании других видов продукции, влияя на их качество. Каждый электроприемник предназначен для работы при определенных параметрах электрической энергии: номинальных частоте, напряжении и т. п., поэтому для нормальной его работы должно быть обеспечено требуемое качество электрической энергии. Таким образом, качество электрической энергии определяется совокупностью характеристик электрической энергии, при которых электроприемники могут нормально работать и выполнять заложенные в них функции. Важность проблемы повышения качества электрической энергии нарастала вместе с развитием и широким внедрением на производстве вентильных преобразователей и различных высокоэффективных технологических установок, таких как дуговые сталеплавильные печи, сварочные установки и др. В итоге возник своего рода парадокс: применение новых технологий, которые экономичны и технологически эффективны, которые улучшают жизнь людей, отрицательно сказывается на качестве электроэнергии в электрических сетях. Ущерб, который несут потребители и энергосистема вследствие ухудшения качества электроэнергии, принято делить на электромагнитный и технологический. Основные формы электромагнитного ущерба: снижение эффективности процессов генерации, передачи и потребления электроэнергии за счет увеличения потерь в элементах сети; уменьшение срока службы и выход из строя электрооборудования из-за нарушения его нормальных режимов работы и старения изоляции; нарушение нормальной работы и выход из строя устройств релейной защиты, автоматики и связи.

В связи с ухудшением качества электроэнергии появляются так называемые отклонения напряжения. Отклонения напряжения оказывают значительное влияние на работу электродвигателей. В случае снижения напряжения на зажимах двигателя уменьшается реактивная мощность намагничивания, при той же потребляемой мощности увеличивается ток двигателя, что вызывает перегрев изоляции. Повышенный износ изоляции приводит к сокращению срока службы двигателя. При значительном снижении напряжения на зажимах асинхронного двигателя, возможно, его «опрокидывание» из-за уменьшения вращающего момента и частоты вращения ротора. Снижение напряжения ухудшает и условия пуска двигателя, так как при этом уменьшается его пусковой момент. Повышение напряжения на выводах двигателя приводит к увеличению потребляемой им реактивной мощности, которую необходимо каким-то образом компенсировать. Отрицательные отклонения напряжения приводят к увеличению производственного процесса во времени, а иногда и к браку продукции. Следует также отметить одно простое, но очень важное правило, общее для любого электрооборудования: при повышении напряжения сверх номинального происходит перерасход электроэнергии по сравнению с уровнем ее потребления в номинальном режиме работы электрооборудования. Во вращающихся машинах гармоники напряжения и тока приводят к появлению добавочных потерь в обмотках ротора, в цепях статора, а также в стали статора и ротора. Потери в проводниках статора и ротора при этом больше, чем определяемые омическим сопротивлением, из-за вихревых токов и поверхностного эффекта. Токи утечки, вызываемые гармониками в торцевых зонах статора и ротора, также приводят к дополнительным потерям. Все это приводит к повышению общей температуры машины и к местным перегревам, наиболее вероятным в роторе, что может привести к очень серьезным последствиям. Также следует отметить, что при определенных условиях наложения гармоник может возникнуть механическая вибрация ротора. Несимметричные токи нагрузки, протекающие по элементам системы электроснабжения, вызывают в них несимметричные падения напряжения. Вследствие этого на выводах ЭП появляется несимметричная система напряжений. Отклонения напряжения у ЭП перегруженной фазы могут превысить допустимые значения. Кроме ухудшения режима напряжения у ЭП, при несимметричном режиме существенно ухудшаются условия работы как самих ЭП, так и всех элементов сети, что ведет к снижению надежности работы электрооборудования и системы электроснабжения в целом. Качественно отличается действие несимметричного режима от симметричного у таких распространенных трехфазных ЭП, как асинхронные двигатели (АД). Сопротивление обратной последовательности АД примерно в 5 раз меньше сопротивления прямой последовательности. Поэтому даже небольшая несимметрия напряжений вызывает значительные токи обратной последовательности, что ведет к дополнительному нагреву статора и ротора. Все это в итоге приводит к ускоренному старению изоляции, уменьшению располагаемой мощности двигателя, к снижению их производительности и дальнейшему дефициту активной мощности.

Поэтому был принят ряд международных нормативов и ГОСТов по нормам качества электрической энергии в системах электроснабжения общего назначения, который определяет все основные показатели качества электрической энергии. Каждый из этих показателей характеризует какое-либо свойство электрической энергии (отклонение напряжения, колебания напряжения и др.). В данной дипломной работе выбранный частотный преобразователь частоты РЭН-2-02-УХЛ4 должен соответствовать всем вышеперечисленным нормам и требованием.