Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety-na-bilety-po-fizike.pdf
Скачиваний:
265
Добавлен:
01.05.2015
Размер:
698.37 Кб
Скачать

1. Кинематика материальной точки. Система отсчета. Траектория, перемещение, скорость, ускорение. Равномерное и равнопеременное прямолинейное движение. 2. Криволинейное движение. Нормальное и тангенсальное ускорения.

3. Движение точки по окружности. Угловые перемещение, ускорение, скорость. Связь между линейными и угловыми характеристиками.

4. Динамика материальной точки. Инерциальные системы отсчета и первый закон Ньютона.

5. Фундаментальные взаимодействия. Силы различной природы(упругие, гравитационные, трения). Второй закон Ньютона. Масса. Третий закон Ньютона. 6. Импульс системы материальных точек. Уравнение движения центра масс. Закон сохранения импульса.

7. Уравнение движения тела переменной массы ( уравнение Мещерского).

8. Момент импульса и момент силы. Уравнение моментов. Закон сохранения момента импульса. Гироскопические явления.

9. Вращение твердого тела вокруг неподвижной оси. Основной закон динамики вращательного движения абсолютно твердого тела. Момент инерции.

10. Расчет момента инерции тел простой формы. Теорема Штейнера.

11. Кинетическая энергия материальной точки и абсолютно твердого тела.

12. Работа переменной силы, мощность. Потенциальные и непотенциальные поля. Консервативные и диссипативные силы. Потенциальная энергия.

13. Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.

14. Работа по перемещения тела в поле тяготения. Космические скорости. 15. Соударения тел. Упругое и неупругое взаимодействия.

16. Колебательное движение и его характеристики: смещение, амплитуда, фаза, циклическая частота, период, скорость, ускорение.

17. Векторные диаграммы для представления гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Энергия колебательного движения.

18. Пружинный и физический маятники.

19. Сложение параллельных колебаний одинаковой и разной частоты. Биения. Сложения колебаний одинаковой частоты Сложение колебаний разной частоты

20. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.

21. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время релаксации, декремент затухания, добротность колебательной системы.

22 Вынужденные колебания. Резонанс.

24. Термодинамическая система параметры состояния термодинамической системы. Основные положения молекулярно-кинетической теории газов.

25. Закон равномерного распределения энергии по степеням свободы молекул. Основное уравнение молекулярно-кинетической теории газов.

26. Закон Максвелла распределения молекул по скоростям теплового движения. Барометрическая формула. Распределение Больцмана.

27. Среднее число столкновений и средняя длина свободного движения молекул. 28. Первый закон термодинамики. Работа, теплота, теплоемкость, ее виды.

29. Политропный процесс, его частные случаи: изобарный, изотермический, адиабатный, изохорный.

30. Второй закон термодинамики. Энтропия. Тепловые двигатели и холодильные машины. Цикл Карно.

1. Кинематика материальной точки. Система отсчета. Траектория, перемещение, скорость, ускорение. Равномерное и равнопеременное прямолинейное движение.

Кинематика́ точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Основная задача механики – определить положение тела в любой момент времени.

Механическое движение – это изменение положения тела в пространстве с течением времени относительно других тел.

Материальная точка – тело, размерами которого в условиях данной задачи можно пренебречь. Система отсчета – тело отсчета, система координат, связанная с ним, и прибор для измерения времени. Перемещение – направленный отрезок (вектор) между начальным и конечным положением тела. Траектория (l) – линия, вдоль которой движется тело.

Путь (S) – длина траектории.

Скорость (V) – величина, показывающая какой путь проходит тело за единицу времени.

Скорость движения

Средняя путевая скорость

Мгновенная скорость/ скорость движения

За единицу скорости принимают скорость такого равномерного прямолинейного движения, при котором тело за одну секунду перемещается на один метр.

Ускорение – это величина, показывающая, как изменяется скорость за одну секунду.

Равномерное прямолинейное движение

Равномерным прямолинейным движением называется такое прямолинейное движение, при котором материальная точка (тело) движется по прямой и в любые равные промежутки времени совершает одинаковые перемещения. Вектор скорости равномерного прямолинейного движения материальной точки направлен вдоль ее траектории в сторону движения. Вектор скорости при равномерном прямолинейном движении равен вектору перемещения за любой промежуток времени, поделенному на этот промежуток времени:

Примем линию, по которой движется материальная точка, за ось координат ОХ, причем за положительное направление оси выберем направление движения точки. Тогда, спроецировав векторы r и v, на эту ось, для проекций ∆rx = |∆r| и ∆vx = |∆v| этих векторов мы можем записать:

, отсюда получаем уравнение равномерного движения:

Т.к. при равномерном прямолинейном движении S = |∆r|, можем записать: Sx = Vx · t. Тогда для координаты тела в любой момент времени имеем:

где - координата тела в начальный момент t = 0.

Равнопеременное прямолинейное движение

Равнопеременным называется движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково, т.е. на равные величины. Это движение может быть равноускоренным и равнозамедленным.

Если направление ускорения а совпадает с направлением скорости V точки, движение называется равноускоренным. Если направление векторов а и V противоположны, движение называется

равнозамедленным.

При равнопеременном прямолинейном движении ускорение остается постоянным и по модулю и по направлению (а = const). При этом среднее ускорение аср равно мгновенному ускорению а вдоль траектории точки. Нормальное ускорение при этом отсутствует (аn=0).

Изменение скорости ∆v = v - v0 в течении промежутка времени ∆t = t - t0 при равнопеременном прямолинейном движении равно: ∆v = a·∆t, или v - v0 = a·(t - t0). Если в момент начала отсчета времени (t0) скорость точки равна v0

(начальная скорость) и ускорение а известно, то скорость v в произвольный момент времени t: v = v0 + a·t. Проекция вектора скорости на ось ОХ связана с соответствующими проекциями векторов начальной скорости и ускорения уравнением: vх = v± aх·t. Аналогично записываются уравнения для проекций вектора скорости на другие координатные оси.

Вектор перемещения ∆r точки за промежуток времени ∆t = t - t0 при равнопеременном прямолинейном движении с начальной скоростью v0 и ускорением а равен:

а его проекция на ось ОХ (или перемещение точки вдоль соответствующей оси координат) при t0 = 0 равна:

Путь Sx, пройденный точкой за промежуток времени ∆t = t - t0 в равнопеременном прямолинейном движении с начальной скоростью v0 и ускорением а, при t0 = 0 равен:

Так как координата тела равна х = х0 + S, то уравнение движения тела имеет вид:

Возможно так же при решении задач использовать формулу:

2. Криволинейное движение. Нормальное и тангенсальное ускорения.

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости XOY проекции vx и vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам:

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением.

где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих:

- нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:

v – мгновенное значение скорости, r – радиус кривизны траектории в данной точке.

- тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

3. Движение точки по окружности. Угловые перемещение, ускорение, скорость. Связь между линейными и угловыми характеристиками.

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением.

где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

Кроме центростремительного ускорения, важнейшими характеристиками равномерного движения по окружности являются период и частота обращения.

Вращательное движение тела или точки характеризуется углом поворота, угловой скоростью и угловым ускорением.

Угол поворота φ - это угол между двумя последовательными положениями радиуса вектора r, соединяющего тело или материальную точку с осью вращения. Угловое перемещение измеряется в радианах.

Угловая скорость (w) – векторная физическая величина, показывающая, как изменяется угол поворота в единицу времени и численно равная первой производной от угла поворота по времени, т.е

. Направление вектора угловой скорости совпадает с направлением вектора углового перемещения, т.е.

вектора, численно равного углу φ и параллельного оси вращения; оно определяется по правилу буравчика: если совместить ось буравчика с осью вращения и поворачивать его в сторону движения вращающейся точки, то направление поступательного перемещения буравчика определит направление вектора угловой скорости. Точка приложения вектора произвольна, это может быть любая точка плоскости, в которой лежит траектория движения. Удобно совмещать этот вектор с осью вращения.

При равномерном вращении численное значение угловой скорости не меняется, т.е. ω = const. Равномерное

вращение характеризуется:

-периодом вращения Т, т.е. временем, за которое тело делает один полный оборот, период обращения измеряется в с;

-частотой, измеряемой в Гц и показывающей число оборотов в с;

-круговой (циклической,угловой) частотой (это та же самая угловая скорость).

Угловая скорость может меняться как по величине, так и по направлению. Векторная величина, характеризующая изменение угловой скорости в единицу времени и численно равная второй производной от углового перемещения по времени, называется угловым ускорением:

Если положение и радиус окружности, по которой происходит вращение не изменяется со временем, то направление векторов углового ускорения и угловой скорости совпадают, если вращение ускоренное, и противоположны, если вращение замедленное.

При равномерном движении по окружности тангенциальная составляющая ускорения равна нулю, т.е. модуль линейной скорости постоянен и определяется соотношением Но т.к. направление скорости постоянно

изменяется, то существует нормальное ускорение Т.о., линейная скорость направлена по касательной к

окружности в каждой точке по движению; ускорение перпендикулярно скорости и направлено к центру кривизны.

Связь между линейными и угловыми величинами, характеризующими движение

Отдельные точки вращающегося тела имеют различные линейные скорости v, которые непрерывно изменяют свое направление и зависят от угловой скорости ω и расстояния r соответствующей точки до оси вращения. Точка, находящаяся на расстоянии r от оси вращения проходит путь ΔS = rΔφ. Поделим обе части равенства на

Переходя к пределам при , получим или .

Таким образом, чем дальше отстоит точка от оси вращения, тем больше ее линейная скорость. По определению ускорения, или

что значения линейной скорости, тангенциального и нормального ускорений растут по мере удаления от оси вращения. Формула устанавливает связь между модулями векторов v, r, ω, которые перпендикулярны друг к другу.

4. Динамика материальной точки. Инерциальные системы отсчета и первый закон Ньютона.

Динамика изучает движение тела в связи с теми причинами (взаимодействиями между телами), которые обуславливают тот или иной характер движения.

В основе классической (ньютоновской) механики лежат три закона динамики, сформулированные Ньютоном в 1687 г. Эти законы возникли как результат обобщения большого количества опытных фактов.

Инерциальные системы отсчета и первый закон Ньютона:

Формулировка первого закона Ньютона такова: всякое тело находится в состоянии покоя или равномерного и прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Оба названных состояния отличаются тем, что ускорение тела равно нулю. Поэтому формулировке первого закона можно придать следующий вид: скорость любого тела остается постоянной, пока воздействие на это тело других тел не вызовет ее изменения.

Первый закон Ньютона выполняется не во всякой системе отсчета. Рассмотрим две системы отсчета, движущиеся друг относительно друга с некоторым ускорением. Если относительно одной из них тело покоится, то относительно другой оно, очевидно, будет двигаться с ускорением. Следовательно, первый закон Ньютона не может выполняться одновременно в обеих системах.

Система отсчета, в которой выполняется первый закон Ньютона, называется инерциальной, поэтому первый закон называют иногда законом инерции. Система отсчета, в которой первый закон Ньютона не выполняется, называется неинерциальной системой отсчета. Инерциальных систем существует бесконечное множество. Любая система отсчета, движущаяся относительно некоторой инерциальной системы прямолинейно и равномерно, будет также инерциальной.

Опытным путем установлено, что система отсчета, центр которой совмещен с Солнцем, а оси направлены на соответствующим образом выбранные звезды, является инерциальной. Эта система называется гелиоцентрической (гелиос - по-гречески солнце). Любая система отсчета, движущаяся равномерно и прямолинейно относительно гелиоцентрической системы, будет инерциальной.

Земля движется относительно Солнца и звезд по криволинейной траектории, имеющей форму эллипса. Криволинейное движение всегда происходит с некоторым ускорением. Кроме того, Земля совершает вращение вокруг своей оси. По этим причинам система отсчета, связанная с земной поверхностью, движется с ускорением относительно гелиоцентрической системы отсчета и не является инерциальной. Однако ускорение такой системы настолько мало, что в большом числе случаев ее можно считать практически инерциальной. Но иногда неинерциальность системы отсчета, связанной с Землей, оказывает существенное влияние на характер рассматриваемых относительно нее механических явлений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]