Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсова робота Романчук Я.А..doc
Скачиваний:
12
Добавлен:
01.05.2015
Размер:
690.69 Кб
Скачать

Завдання № 3 Розробити модель центру іт – технологій і дослідити поведінку характеристик і ефективності.

В центр ІТ - технологій з r комп’ютерами надходять замовлення на обчислювальні роботи від різних фірм. Якщо всі комп’ютери зайняті роботою, то замовлення, що поступає до центру, не приймається і фірма змушена звертатися в інше місце. Середній час виконання замовлення складає 3 год. Інтенсивність потоку заявок є величина λ.

Дана система належить до багатоканальних систем масового обслуговування з відмовами.

Багатоканальні СМО – це СМО з декількома однаковими пристроями обслуговування, що ввімкнені паралельно (мал. 2.4).

Аналіз багатоканальних СМО набагато складніший, ніж одноканальних. За допомогою теорії масового обслуговування можна отримувати аналітичні залежності в замкнутому вигляді для розрахунку характеристик роботи багатоканальних СМО в стаціонарному режимі роботи тільки лише для моделей типу Для СМО з іншими законами розподілу часу надходження й обслуговування вимог, використовують чисельні методи.

Для системи, що складається з однакових пристроїв обслуговування коефіцієнт завантаження дорівнює:

Його можна трактувати як математичне очікування числа зайнятих пристроїв.

Розглянемо класичне завдання Эрланга.

Є п каналів, на які поступає потік заявок з інтенсивністю . Потік обслуговувань має інтенсивність. Знайти граничну вірогідність станів системи і показники її ефективності.

Система S (СМО) має наступні стани (нумеруємо їх по числу заявок, що знаходяться в системі): So, S1, S2, ..., Sk ..., Sn, деSk— стан системи, коли в ній знаходиться k заявок, тобто зайнято k каналів.

Граф станів СМО відповідає процесу загибелі і розмноження показаний на мал. 2

S0

S2

S1

Sn

Мал. 2

Потік заявок послідовно переводить систему з будь-якого лівого стану в сусідній правий з однією і тією ж інтенсивністю . Інтенсивність же потоку обслуговуванні, що переводять систему з будь-якого правого стану в сусідній лівий стан, постійно міняється залежно від стану. Дійсно, якщо СМО знаходиться в стані S2 (два канали зайняті), то вона може перейти в стан S1 (один канал зайнятий), коли закінчить обслуговування або перший, або другий канал, тобто сумарна інтенсивність їх потоків обслуговуванні буде 2. Аналогічно сумарний потік обслуговуванні, що переводить СМО із стану S3(три канали зайняті) у S2матиме інтенсивність 3, тобто може звільнитися будь-який з трьох каналів і т.д.

Для схеми загибелі і розмноження одержимо для граничної вірогідності стану

де члени розкладання, , —,будуть представляти собою коефіцієнти при роу виразах для граничної вірогідності p1, p2, pk ., pn.

Величина називається приведеною інтенсивністю потоку заявок або інтенсивністю навантаження каналу. Вона виражає середнє число заявок, що приходить за середній час обслуговування однієї заявки. Тепер

(а)

Формула (а) для граничної вірогідності одержала назву формула Эрланга на честь засновника теорії масового обслуговування.

Вірогідність відмови СМО є гранична вірогідність того що всі п каналів системи будуть зайняті, тобто

Відносна пропускна спроможність — вірогідність того, що заявка буде обслужена:

Абсолютна пропускна спроможність:

Середнє число зайнятих каналів є математичне очікування числа зайнятих каналів:

де pk— гранична вірогідність станів, визначуваних по формулі (8).

Проте середнє число зайнятих каналів можна знайти простіше, якщо врахувати, що абсолютна пропускна спроможність системи А є не що інше, як інтенсивність потоку обслужених системою заявок (у одиницю часу). Оскільки кожен зайнятий канал обслуговує в середньому заявок (у одиницю часу), то середнє число зайнятих каналів

або

Складаємо ланцюг Маркова для даної системи:

Вихідні параметри: λ=0,7 ;r=3 ; µ=3

7,8%

Висновок:

r

λ

s

Pn

Mz

Mr

Q

A

Kz

3

0,7

3

1,677*10^-3

0,233

2,767

0,998

0,699

0,078

2

0,7

2

0,043

0,335

1,665

0,957

0,67

0,167

як видно з результатів моделювання коефіцієнт зайнятості вузлів дорівнює 7,8%, що є явною ознакою невисокої ефективності роботи системи. Для покращення показників функціонування необхідно зменшити кількість комп’ютерів до 2 більш дорогих які дадуть змогу зменшити середній час виконання до 2 год. , тоді коефіцієнт зайнятості збільшиться до 16.7% і при цьому імовірність відмови зросте лише до 4,3%.