
- •Биологическая физика
- •1. Введение
- •2. Содержание дисциплины и методические указания по изучению курса.
- •I Физические основы механики
- •6. Основы акустики.
- •Основы молекулярно-кинетической теории газов
- •3. Основы термодинамики
- •III Электричество и магнетизм
- •1. Электростатика
- •2. Постоянный ток
- •3. Электромагнетизм. Переменный ток
- •IV. Электромагнитные колебания и волны. Оптика. Физика атома и атомного ядра
- •1. Электромагнитные волны
- •2. Геометрическая и волновая оптика
- •3. Квантово-оптические явления
- •4. Основы атомной и ядерной физики
- •3. Рекомендуемая литература
- •Основная:
- •Вопросы для экзамена ( с кратким содержанием)
- •I. «физические основы механики»
- •II. Молекулярная физика и термодинамика
- •III. Электричество и магнетизм
- •IV. Электромагнпитные колебания и волны. Оптика.
- •V. Строение атомного ядра.
- •5. Методические указания к выполнению контрольной работы.
- •Пример оформления решения задачи.
- •Проверяем размерность
- •Задачи контрольной работы.
- •Раздел I «Физические основы механики»
- •Основные формулы
- •Раздел II «Молекулярная физика и термодинамика»
- •Раздел III «Электричество и магнетизм»
- •6) Напряженность поля плоского конденсатора
- •7) Поверхностная плотность заряда
- •8) Емкость плоского конденсатора
- •9) Зависимость сопротивления проводника
- •Раздел IV«Электромагнитные колебания и волны. Оптика. Атомная и ядерная физика»
- •Справочные данные
- •Свойства некоторых жидкостей
- •Уральская государственная академия ветеринарной медицины
- •Контрольная работа
- •457100, Г. Троицк, ул. Гагарина., 13
3. Электромагнетизм. Переменный ток
В данном разделе изучаются свойства и характеристики магнитного поля, посредством которого осуществляется взаимодействие между движущимися зарядами – токами. Оно описывается законом Ампера.
Переходя к изучению закона электромагнитной индукции Фарадея, предварительно следует дать определение магнитного потока. Закон Фарадея формулируется качественно и количественно вместе с правилом Ленца, определяющим направление ЭДС индукции.
Следует разобрать явления самоиндукции и взаимоиндукции как частный случай явления электромагнитной индукции. Привести примеры, имеющие практическое значение (генератор переменного тока, трансформатор). Уметь написать уравнение для силы и напряжения переменного тока, знать понятие действующих или эффективных значений напряжения и силы тока.
Необходимо усвоить особенности протекания переменного тока через живые ткани. Уметь объяснять применение явлений, происходящих в живом организме при протекании переменного тока, для диагностических целей.
Изучая магнитное поле в веществе, следует уяснить, что все вещества по магнитным свойствам делятся на три группы: диа-, пара- и ферромагнетики. Уметь объяснить механизм намагничивания веществ, привести значения магнитной проницаемости для трех групп магнетиков. Знать биологическое действие постоянного магнитного поля, роль геомагнитного поля в жизнедеятельности земных организмов.
IV. Электромагнитные колебания и волны. Оптика. Физика атома и атомного ядра
1. Электромагнитные волны
Следует повторить все, что относится к гармоническим колебаниям, затем уяснить понятие синусоидальной волны.
Рассматриваются электромагнитные колебания в закрытом колебательном контуре – цепи, состоящей из катушки и конденсатора, способы получения незатухающих колебаний в генераторе.
Затем переходят к понятию открытого колебательного контура как источника электромагнитных волн в пространстве. Рассматриваются постулаты теории Максвелла, формула для скорости электромагнитной волны. Необходимо уметь графически изобразить структуру электромагнитной волны. Важно составить представление о непрерывности шкалы электромагнитных излучений, рассмотреть их виды (низкочастотные, радиоволны, микроволны, инфракрасные, видимые, ультрафиолетовые, рентгеновские, гамма-излучение), физические свойства, биологическое действие и применение.
2. Геометрическая и волновая оптика
Изучение оптики начинается с рассмотрения вопроса о развитии представлений о природе света. Следует уяснить, что свет обладает как волновыми, так и корпускулярными свойствами (корпускула – частица). Такая двойственность называется корпускулярно-волновой дуализм.
В геометрической оптике рассматриваются законы отражения и преломления, явление полного внутреннего отражения, физический и геометрический смысл показателя преломления, оптические схемы лупы и микроскопа, представления об устройстве и применении рефрактометра, световодов. В биофизике законы геометрической оптики применяются для рассмотрения механизма зрения – формирования изображения в глазу.
С точки зрения волновой оптики свет – это электромагнитная волна определенного диапазона на шкале всех волн. Волновая природа света подтверждается такими явлениями, как интерференция и дифракция.
Перед рассмотрением волновых явлений необходимо сформировать понятие спектра. Для этого рассмотреть явление дисперсии света в призме, затем разобраться различиях спектров – призматического, интерференционного и дифракционного.
Рассмотреть сущность интерференции как усиления или ослабления когерентных волн при их наложении, способы создания когерентных волн, применение интерференции и проявление в природе.
Дифракция представляет собой явление огибания препятствия или краев отверстия при условии, что размеры препятствия или отверстия соизмеримы с длиной волны. Уметь объяснить устройство и назначение дифракционной решетки.
Еще одно явление, рассматриваемое с позиции волновой оптики – поляризация света. Сущность поляризации в том, что поляризованный пучок света обладает неодинаковыми свойствами в различных плоскостях.
Знать принцип действия поляриметра, его применение.