Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
арх_физика / Л-8 Волн и Геометр теор акуст - оригинал.doc
Скачиваний:
61
Добавлен:
25.04.2015
Размер:
314.37 Кб
Скачать

4.2. Спектр собственных частот

Приведем в качестве примеров результаты расчета длин волн и частот, соответствующих резонансным колебаниям в помещении. Пусть помещение имеет 2 вид прямоугольного параллелепипеда с линейными размерами 10, 6, 4 м.

Наибольшая длина волны будет в два раза больше максимального размера помещения, т.е. имеем 10х2 = 20 м. Результаты сведены в таблице 4, причем значения частот округлены до целых чисел.

Таблица 1

Номера колебаний

Значение параметров

, м

f, Гц

p

q

n

1

1

0

0

20,0

17

2

0

1

0

12,0

28

3

1

1

0

10,3

33

4

2

0

0

10,0

34

5

0

0

1

8,0

42

6

2

1

0

7,7

44

7

1

0

1

7,4

46

8

0

1

1

6,7

51

9

1

1

1

6,3

54

10

2

0

1

6,2

55

11

0

2

0

6,0

57

12

1

2

0

5,75

59

13

0

0

2

4,0

85

14

1

0

2

2,9

117

Из результатов расчета видно, что на нижних частотах резонансы следуют через значительные промежутки и должны привести к заметному изменению спектра отзвука по сравнению со спектром исходного звучания, следовательно, к изменению тембра отзвука. Между тем, повседневный опыт убеждает нас в обратном. Как объяснить это противоречие? Объяснение сводится к следующему. В той области частот, где резонансные частоты расположены редко, соответствующие частотные составляющие в спектре речевых и музыкальных сигналов почти не встречаются. Реальное значение могли бы иметь, например, 13 и 14 частоты, но интенсивность резонансных колебаний столь больших номеров невелика, поэтому заметного изменения тембра отзвука не произойдет. С увеличением частоты плотность резонансных частот быстро возрастает. Так, в области 500 Гц на 1 Гц полосы частот придется примерно 10 резонансных частот. В связи с этим в помещениях большого объема, какими являются концертные и театральные залы, ухудшения звучания не происходит.

Иное положение складывается в помещениях небольшого объема, например в речевых (дикторских) студиях и жилых комнатах. Известны жалобы дикторов, что их голос в речевых студиях звучит совершенно необычно, неприятно, ощущается "бубнение". Объясняется это тем, что в помещениях небольшого объема основная резонансная частота попадает в область хорошо слышимых звуков. Для борьбы с этим неприятным явлением приходится либо значительно уменьшать время реверберации путем использования в студии эффективно поглощающих материалов, либо ограничивать полосу пропускания электрического тракта ниже 250–300 Гц. "Бубнение" свойственно и многим жилым комнатам. Устранить этот недостаток почти невозможно, так как нет дешевых материалов, эффективно поглощающих звуковую энергию в области 100 Гц и ниже.

Особенно выражены резонансы в помещениях с совпадающими линейными размерами. В этом случае совпадают резонансные частоты, обусловленные стоячими волнами в разных плоскостях. Наихудшим в акустическом отношении является помещение кубической формы, наилучшим – помещение, пропорции которого приближаются к "золотому сечению". Заключение, сделанное акустиками древности, нашло подтверждение в выводах волновой теории.

Дж. В. Стретт в "Теории звука" отметил наблюдавшееся им вырождение спектра собственных частот в помещении с преобладанием одного из линейных размеров и, следовательно, с преобладанием одного из видов собственных колебаний: "В моем доме есть подземный коридор, в котором можно, пропев надлежащую ноту, возбудить свободные колебания, продолжающиеся много секунд, и часто случается, что звучащая нота сопровождается отчетливыми биениями". Эти биения порождаются одновременным возбуждением двух близких собственных частот.

Каждый человек обнаружит резонансные частоты помещения, пропев несколько звуков разной частоты. Помещение отзовется на некоторые из них усилением колебаний.

Убедиться, что помещение небольшого объема с совпадающими линейными размерами обладает обедненным спектром собственных частот, можно, проделав простой опыт. В слабо заглушенном помещении (например, ванной комнате), стены которого покрыты кафельными плитками, ударьте в ладоши. Вместо ожидаемого шумового отклика вы услышите звенящий звук с заметно выраженной высотой тона. Это объясняется бедностью спектра собственных частот такого помещения.

Стретт заметил, что люди с особо развитым слухом, например, слепые, обладают способностью решить обратную задачу: анализируя каким-то неведомым способом спектр отзвука, они определяют линейные размеры помещения и их пропорции.