Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника май 2014 / электрон_конспект.doc
Скачиваний:
122
Добавлен:
17.04.2015
Размер:
2.35 Mб
Скачать

1.2. Полупроводники p- иn- типов

В качестве полупроводников наиболее широко применяются кристаллический кремний или германий (собственные полупроводники); ширина запрещенной зоны у них соответственно составляет 1,1 эВ и 0,72 эВ. Полупроводник имеет кристаллическую решетку в виде тетраэдра. Плоскостное изображение различных типов полупроводников показано на рис. 1.3.

В узлах кристаллической решетки полупроводника i-типа находятся четырехвалентные ионы кремния или германия (см. рис. 1.3,а). Внешние орбитальные электроны образуют ковалентные связи.

В полупроводниках существуют носители зарядов двух типов - электроны и дырки. Дырка – это отсутствие электрона. Дырка – это квазичастица, то есть не реальная частица,

а оборванная ковалентная связь после отрыва электрона от атома. Заряд дырки положителен и равен по величине заряду электрона.

Под воздействием внешних факторов (температура, свет, ионизирующие излучения и т.д.) в собственном полупроводнике (i-типа) возможен разрыв отдельных ковалентных связей с образованием пар носителей заряда электрон-дырка. Электрон переходит в зону проводимости (если его энергия больше ширины запрещенной зоны), где он становится свободным электроном (электроном проводимости). Находясь в валентной зоне, дырка тоже может перемещаться, однако ее подвижность в два - три раза меньше подвижности свободного электрона, так как дырка последовательно перемещается от одного атома к другому. Перемещение дырок по физической сути является перемещением электронов в валентной зоне: электрон соседнего атома восстанавливает ковалентную связь, образуя дырку.

Процесс образования пар носителей заряда (НЗ) под воздействием внешних факторов называется генерацией НЗ.

При встрече электрона с дыркой восстанавливается ковалентная связь – носители заряда рекомбинируют. При этом выделяется энергия. Рекомбинация электронов и дырок может быть безизлучательной и излучательной. Излучательная рекомбинация НЗ возможна в прямозонных полупроводниках (см. рис. 1.2,б). Она сопровождается испусканием квантов света и используется для создания полупроводниковых светодиодов. При безизлучательной рекомбинации энергия передается кристаллической решетке полупроводника.

Если в полупроводник ввести атомы примесей, то они будут находиться в особых состояниях. Дискретные энергетические уровни электронов примесей при малых концентрациях лежат внутри запрещенной зоны (см. рис. 1.1). Если в полупроводник ввести донорную примесь (в 4-валентный Si или Ge ввести 5-валентный As или Sb), то при ионизации донорного атома один электрон переходит с донорного уровня Ед в зону проводимости. Разность энергий ЕД = ЕС – ЕД называется энергией ионизации донора. Так как ЕД << ЕД, то при невысоких температурах число свободных электронов, возникающих вследствие ионизации доноров, превышает число носителей заряда, возникающих вследствие тепловой генерации из атомов полупроводника. В таком полупроводнике электроны называются основными носителями зарядов, а полупроводник электронным или n-типа (см. рис. 1.3,б) от латинского Negativus – отрицательный.

Донорными примесями могут быть химические элементы V и VI групп: V группа - P, As, Sb; VI группа - S, Se, Te.

Если в полупроводник ввести акцепторную примесь (в 4-валентный Si или Ge ввести 3-валентный В, Al, или In), то в таком полупроводнике будет преобладать дырочная проводимость – основные носители заряда - дырки. Такой полупроводник называется дырочнымили p-типа (см. рис. 1.3,в) от латинскогоPosetivus – положительный. Энергия ионизации акцепторовЕА= ЕА– ЕV. Переход электронов из валентной зоны на акцепторные уровни приводит к появлению в валентной зоне дырочной проводимости.

Акцепторные примеси - это элементы II и III труппы: II группа - Zn, Cd, Hg; III группа - B, Al, Ga, In.

Помимо основных носителей зарядов в примесных полупроводниках за счет воздействия внешних факторов генерируются пары носителей зарядов как и в собственных полупроводниках (i–типа). При этом электроны в полупроводниках р-типа и дырки в полупроводниках n-типа и являются неосновными носителями зарядов (ННЗ), так как их концентрация во много раз меньше концентрации ОНЗ. Если обозначить:

nn, pp- концентрации основных носителей зарядов (ОНЗ);

np, pn- концентрации неосновных носителей зарядов (ННЗ);

то nnpn= nppp= n2i- величина постоянная для каждого полупроводника и зависит от температуры.

Соседние файлы в папке Электроника май 2014