
- •1. Предмет генетики и ее связь с другими науками
- •2. Этапы развития генетики. Вклад отечественных учёных в развитие генетики
- •3. Строение ядра и хромосом
- •4. Свойство хромосом и понятие о кариотипе. Особенности кариотипов разных видов с/х животных
- •5. Строение и функции органоидов клетки
- •6. Митоз. Его биологическое значение.
- •7. Мейоз. Его биологическое значение.
- •8. Сперматогенез и оогенез
- •9. Патология деления клеток и её последствия. Оплодотворение. Избирательность при оплодотворении
- •10. Фенотип и генотип. Наследственность и изменчивость и их виды
- •13. Биометрическая обработка качественных выборок (х, σ, rg, дисперсионный анализ)
- •14. Корреляция, регрессия, повторяемость, наследуемость – понятие, вычисление, значение
- •15. Строение и хим состав днк
- •16. Строение и типы рнк
- •17. Доказательство роли днк в наследственности
- •18. Синтез днк и рнк
- •19. Генетический код и его свойства
- •20. Современное представление о структуре и функции генов
- •21. Синтез белка в клетке
- •22. Регуляция синтеза и-рнк и белка
- •23. Дифференциальная активность генов в онтогенезе
- •24. Влияние генов и среды на развитие признака
- •25. Критические периоды развития. Взаимодействие ядра и цитоплазмы в развитии
- •26. Фенотип и генотип микроорганизмов. Строение генома у бактерий и вирусов и его репликация
- •27. Конъюгация, трансформация у микроорганизмов и трандукция
- •28. Понятия: мутация, мутагенез, мутант. Классификация мутаций
- •29. Геномные, хромосоиные, генные, цитоплазматические мутации
- •30. Классификация мутагенов. Антимутагены
- •34. Закон гомологических рядов в наследственной изменчивости и его значение
- •35. Генная инженерия
- •36. Клеточная инженерия. Получение моноклональных антител
- •37. Трансплантация и клонирование эмбрионов млекопитающих
- •38. Химерные и трансгенные животные
- •39. Полное доминирование. Пример и схема
- •40. Неполное доминирование. Пример и схема
- •41. Промежуточное наследование. Пример и схема
- •42. Сверхдоминирование. Гетерозис и его использование в животноводстве
- •43. Плеотропное действие генов. Пример и схема
- •44. Множественный аллелизм. Пример и схема
- •45. Кодоминирование. Пример и схема
- •46. Возрастное, анализирующее, рецепрокное скрещивание. Пример. Практическое использование
- •47. Менделевские законы наследственности. Неменделевское наследование признаков
- •48. Эпистаз. Пример и схема.
- •49. Комплиментарность. Пример и схема
- •50. Новообразование. Пример и схема
- •51. Гены - модификаторы. Пример и схема
- •52. Полимерия. Пример и схема. Особенности наследования количественных признаков
- •53. Явление сцепленного наследования. Полное сцепление генов и признаков
- •54. Явление неполного сцепления в наследовании признаков
- •55. Карты хромосом. Пример их построения
- •57. Бисексуальность, интерсексуальность, гиандроморфизм, химеризм по половым хром-мам. Роль гормонов и условий среды в развит признаков пола
- •58. Типы детерминации пола у животных. Первичное и вторичное соотношение полов. Проблема регулирования пола
- •59. Основные положения хромосомной теории наследственности
- •60. Наследование признаков, сцепленных с полом
- •61. Наследование, ограниченное полом. Наследование, контролируемое полом
- •62. Понятие популяции. Типы. Свойства
- •63. Факторы, изменяющие структуру популяций
- •64. Отбор в популяциях и чисой линии. Закон Харди-Вайнберга и его использование для определения генетич структуры популяции
- •65. Генетический груз и методы его оценки
- •66. Использование инбридинга в животноводстве
- •67. Группы. Системы крови и их номенклатура. Получение реагентов для определения групп крови
- •68. Значение групп крови для животноводства и ветеринарии
- •70. Понятие иммунитета. Неспецифические факторы защиты
- •72. Лимфоциты: т и в – типа. Их функции
- •73. Иммунный ответ. Локус иммунного ответа
- •75. Главный комплекс гистосовместимости (мнс)
- •76. Дефекты иммунной системы. Врождённый и приобретённый иммунитет
- •77. Понятие о тератологии. Методы определения типа наследования аномалий
- •78. Типы наследования аномалий. Летальные гены. Пенетрантсть и экспрессивность генов
- •83. Генетическая устойчивость и восприимчивость к бактериальным болезням (мастит, бруцеллёз, туберкулёз, лептоспироз)
- •84. Генетическая устойчивость и восприимчивость к вирусам (лейкоз, ящур, болезнь Марека, псевдочума птиц, скрепи, микроплазмоз)
- •85. Генетическая устойчивость и восприимчивость к простейшим (трипаносомоз, эймериоз, сердечная водянка, анаплазмос)
- •86. Генетическая устойчивость и восприимчивость к гельмитозам (фасцилёз, стронгилоидоз, геманхоз, аскаридоз), клещам и грибкам
- •89. Генетическая устойчивость к бесплодию
- •90. Влияние факторов среды на устойчивость к наследственно – средовым болезням
- •91. Методы повышения устойчивости животных к болезням
- •92. Распространённость аномалий в популяциях с/х животных и профилактика их распространения
20. Современное представление о структуре и функции генов
Ген - совокупность сегментов ДНК, которые вместе образуют наследственную единицу, отвечающую за функциональную продуктивность, т.е.за белок или т-РНК, или р-РНК. В сост входит: 1) единица транскрипции, т.е.участок ДНК, кодирующий не зрелую РНК; 2) промотр – длина гена может быть от 190-16000 пар нуклеотид. Ген явл единицей ф-и, т.е.есть ген целиком, а не отдельн его куски, кодирует РНК. Явл единицей мутации и един рекомбинации могут быть отдельные нуклеотиды в гене, т.е.даже 2 соседн. нуклеотиды могут разъединить с помощью кроссинговера и даже 1 нуклеотид может мутировать, место мутации в гене наз сайт. Сайты, на которых мутации происход. часто – горячи точки. У прокариотов гены непрерывные, т.е. сост. только из экзонов.у эукориотов гены прерывистые, т.е. сост. из экзонов и интронов. Перекрывающий ген – ген явл. частью др. гена, происходит наложение рамок считывания. При образовании зрелой и-РНК один экзон может соединиться с др. экзонам, образуется семейство, близких по строению и-РНК. Гены способны перемещаться - троспозоны. Ген и его копии и псевдогены образ семейство. 2 группы ДНК: структурные - кодируют белки и и-РНК; регуляторы – регулируют работу структурных генов. На эти 2 группы генов приходится от 15-98% всей ДНК, а остальная ДНК – избыточная, они копируют уже имеющиеся гены.
21. Синтез белка в клетке
Синтез белка в кл происходит в интерфазе в период G1 в 2 этапа: транскрипция, трансляция. Транскрипция – переписывается информация с ДНК на и-РНК. Переписана может быть любая цепь материнской ДНК, но обычно переписывается матричная. и-РНК строится из свободных рибонуклеатидов ядра по принципу комплиментарности матрицы. Образование эфирных связей между рибонуклеотидами способствует фермент РНК – полимераза. У прокариот известен 1 такой ф-т, а у эукариотов – 3 – для и-РНК, т-РНК, р-РНК. РНК полимераза связывается промоутером – специфическая последовательность нуклеотидов длиной 6 – 30 оснований, который стоит перед каждым геном. Начиная с промоутера, РНК полимераза расплетает ген на 2 цепи и на матричной строится РНК. Когда считывание инф-ции на ДНК дойдёт до обратных повторов нуклеотидов, на цепи РНК образуется петля или шпилька. Она мешает продвижению РНК полимераза, поэтому синтез РНК останавливается. У прокариот и-РНК не требует созревания, т.к. не содержит интронов; у эукариот образ-ся незрелый транскрипт и – РНК – включает в себя экзоны – участок, кот кодирует аминокислоты; интроны – нуклеотиды, не несущие инф-цию. Созревание и-РНК происходит в ядре и наз-ся процессинг, кот состоит в том, что интроны вырезаются, а оставшиеся экзоны сращиваются в цепь – силайсинг. Затем зрелая и-РНК модифицируется: 1) на 5 ́ конце и-РНК образуется кэп или колпачок – от 50 – 200 остатков метилированного гуанина. С помощью него и-РНК прикрепляется к малой субчастице рибосомы. 2) к 3 ́ концу прикрепляется до 200 адениловых остатков. Они стабилизируют цепь и-РНК. В таком виде зрелая и-РНК направляется в цитоплазму на рибосомы и прикрепляется на малую субчастицу. Трансляция – сборка белка из аминокислот: 1) инициация – начало синтеза. т-РНК-и узнаёт триплет инициатор синтеза АУГ, стоящее в начале цепи и-РНК. т-РНК-м узнает этот же триплет в любом месте цепи и-РНК. Большая субчастица рибосомы соедин-ся с малой. 2) Элонгация – удлинение белковой цепи. т-РНК-и занимает п-участок рибосомы, а вторая т-РНК, антикодон которой соответствует кадону, на и-РНК переносит свою аминокислоту в а- участок рибосомы. Между аминокислотой наход-ся п- и а- участки, образуется пептидная связь. а- участок освобождается, т.к. рибосомы передвигаются по и-РНК на один шаг. В него поступает третья аминокислота – трипептид – рибосомы продвигаются на шаг. 3) терминация – остановка синтеза. Когда считывание инф-ции на и-РНК дойдёт до одного триплета терминаторов, а участок не освобождается, т.к. нет т-РНК, кот соответствует терминатору – синтез белка прекращается. С помощью трёх белков факторов терминации цепь белка и цепь и-РНК отсоединяются от рибосомы.