- •Краткий курс лекций по дисциплине
- •2 Контроль важнейших технологических параметров.
- •2.1 Измерение температуры.
- •2.1.1 Классификация приборов для измерения температур.
- •2.1.2 Термометры расширения.
- •2.2.1 Милливольтметр
- •2.2.2 Ручной потенциометр:
- •2.2.3 Автоматический потенциометр
- •2.3 Термопреобразователи сопротивления и вторичные приборы к ним.
- •2.3.3 Уравновешенные мосты. Двухпроводные схемы соединений.
- •2.3.4 Уравновешенные мосты. Трехпроводная схема соединений.
- •2.3.5 Автоматический мост.
- •2.3.6 Сравнительный анализ автоматических мостов и автоматических потенциометров
- •2.5 Счетчики количества.
- •2.5.1 Объемные счетчики количества.
- •2.6 Измерение давления.
- •2.6.1 Классификация приборов для измерения давления.
- •2.6.2 Грузо-поршневые приборы.
- •2.6.3 Деформационные приборы.
- •2.6.4 Основные сведения о выборе, установки и защите от агрессивных сред, приборов для измерения давления.
- •2.7.3 Электрические уровнемеры.
- •3 Основы теории автоматического управления
- •3.1 Общая структурная схема систем автоматического управления.
- •3.2 Классификация систем автоматического управления.
- •3.3 Состав структурных схем автоматического управления.
- •3.4 Определение передаточной функции су при различных соединениях динамических звеньев.
- •3.5 Соединения с замкнутой обратной связью
- •3.6 Устойчивость систем автоматического управления
- •3.7 Основные виды переходных процессов в системах автоматического управления.
- •3.8 Определение устойчивости системы автоматического управления
- •3.8.1 Определение устойчивости по корням характеристического уравнения
- •3.8.2 Критерий устойчивости
- •3.9 Временные характеристики систем управления
- •3.10 Математические модели автоматических регуляторов.
- •3.10.1 Позиционные регуляторы
- •3.10.2 Интегральный регулятор и – регулятор
- •3.10.3 Пропорциональный регулятор
- •3.10.4 Пропорционально интегральные регуляторы (пи)
- •3.11.2 Типовые переходные процессы (виды переходных процессов)
- •4 Первичные преобразователи (датчики) и основные измерительные схемы.
- •4.1 Параметрические преобразователи
- •4.1.2 Потенциометрические преобразователи.
- •4.1.3 Тензометрические преобразователи.
- •4.1.4 Фотоэлектрический преобразователь
- •4.1.5 Трансформаторный преобразователь.
- •4.1.6 Индуктивный преобразователь.
- •4.3 Измерительные схемы.
- •4.3.1 Компенсирующая или уравновешивающая схема.
- •4.3.2 Мостовая схема
- •4.3.3 Дифференциально-трансформаторная схема.
- •5 Основы моделирования управляющих технических систем
- •5.1 Классификация объектов управления.
- •5.1.1. Одномерные объекты
- •5.1.2 Многомерные объекты
- •5.1.3 Объект с сосредоточенными параметрами.
- •5.1.4 Объекты с распределенными параметрами.
- •5.2 Свойства объектов управления.
- •5.3 Выбор элементов управления систем
2 Контроль важнейших технологических параметров.
2.1 Измерение температуры.
Температура- это условная статическая величина, характеризующая среднюю кинетическую энергию атомов и молекул.
Температурной шкалой, называют ряд отметок внутри температурного интервала, ограниченного двумя легко воспроизводимыми температурами. Для упорядочения температурных измерений была принята международная практическая температурная шкала М П Т Ш- 68. За единицу температуры в этой шкале был принят К, но допускается и применение 0С.
2.1.1 Классификация приборов для измерения температур.
Термометры расширения:
Монометрические термометры:
Термоэлектрические термометры:
Термопреобразователи сопротивления:
Пирометры излучения.
2.1.2 Термометры расширения.
Данные термометры по виду рабочего тела разделяются на 2 группы:
Жидкостные термометры:
Твердотельные термометры.
Принцип действия жидкостных термометров основан на различии коэффициентов объемного теплового расширения жидкости и материала, из которого сделан сам термометр. Для твердотельных термометров принцип действия рассчитан на различии коэффициентов линейного теплового расширения рабочей пары. По типу рабочей пары данные термометры делятся на биметаллические и дилатометрические. У биметаллических- Ме+ Ме. У дилатометрических Ме+ Кер.
2.1.3 Манометрические термометры.
Принцип действия основан на преобразовании величины температуры в величину давления в замкнутом пространстве.

Рисунок 1
По виду рабочего тела Монометрические термометры подразделяются на:
Газовые:
Жидкостные:
Конденсационные.
Градуировка манометрических термометров осуществляется в условиях завода изготовителя при температуре капилляра и манометрической части 200С.
Для уменьшения температурной погрешности объем термометра должен составлять не менее 80% от объема всего пермометра.
2.1.4 Термоэлектрические преобразователи ( термопары ).
Термопара - это система состоящая из двух или нескольких разнородных проводников в которой возникает термо эдс (Еtt0).
Наиболее часто для температурных измерений используются термо пары типов ТХК, ТХА, ППР.
ТХК- термопара хромель- копелевая;
ТХА- термопара хромель- алюмелевая;
ППР- термопара платина- платино-родиевый.
Градуировочной характеристикой термопары называется зависимость между измеряемой температурой в градусах и термо эдс температуры в мВ. Градуировочные характеристики представлены в виде таблиц для температуры холодного спая 00С.

Рисунок 2
2.2 Вторичные измерительные приборы для термоэлектрических преобразователей.
2.2.1 Милливольтметр
Милливольтметр- прибор магнитоэлектрической системы конструктивно представляет собой подвижную рамку, расположенную между полюсами магнита.
Особенности приборов магнитоэлектрической системы;
наличие постоянного магнита;
наличие одной или нескольких подвижных рамок;
наличие спиральных пружин, которые являются тоководами и которые создают при закручивании компенсирующий момент. При протекании тока по рамке ( при подключении Еtt0) возникает вращающий момент Мвр= Рамка поворачивается, спиральные пружины закручивается и создается компенсирующий момент. Мк= к2Е

Рисунок 3
Условия равновесия рамки:
![]()
коэффициент,
характеризующий геометрические размеры
рамки:
![]()
коэффициент,
характеризующий геометрические размеры
пружины:
B-магнитная индукция:
I-сила тока:
угол
отклонения рамки или стрелочного
указателя.
![]()
