- •1. Предмет электроники, ее роль в науке и технике
- •2. Полупроводниковые приборы
- •2.1. Электрические свойства полупроводниковых материалов
- •2.2. Механизм электропроводности полупроводников
- •2.2.1. Собственная электропроводность
- •2.2.2. Примесная проводимость
- •2.3. Электронно-дырочный переход (эдп)
- •2.3.1. Технологии изготовления эдп
- •2.3.1.1. Сплавная технология
- •2.3.1.2. Диффузионная технология
- •2.3.2. Эдп при отсутствии внешнего напряжения
- •2.3.3. Эдп при прямом напряжении
- •2.3.4. Эдп при обратном напряжении
- •2.3.4.1. Механизм установления обратного тока при приложении
- •3. Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика (вах) диода
- •3.2. Параметры полупроводниковых диодов
- •4. Виды пробоев эдп
- •4.1. Зеннеровский пробой
- •4.2. Лавинный пробой
- •4.3. Тепловой пробой
- •4.4. Поверхностный пробой
- •5. Основные типы полупроводниковых диодов
- •5.1. Устройство точечных диодов
- •5.2. Устройство плоскостных диодов
- •5.3. Условное обозначение силовых диодов
- •5.4. Условное обозначение маломощных диодов
- •5.5. Конструкция штыревых силовых диодов
- •5.6. Лавинные диоды
- •5.7. Конструкция таблеточных диодов
- •5.8. Стабилитрон
- •5.9. Туннельный диод
- •5.10. Обращенный диод
- •5.11. Варикап
- •5.12. Фотодиоды, полупроводниковые фотоэлементы и светодиоды
- •6. Транзисторы
- •6.1. Распределение токов в структуре транзистора
- •6.2. Схемы включения транзисторов. Статические вах
- •6.3. Схема включения транзистора с общей базой
- •6.4. Схема включения транзистора с общим эмиттером
- •6.5. Схема включения транзистора с общим коллектором
- •6.6. Схемы включения транзистора как усилителя
- •6.7. Краткие характеристики схем включения транзистора. Области применения схем
- •6.7.1. Схема включения транзистора с общей базой
- •6.7.2. Схема включения транзистора с общим эмиттером
- •6.7.3. Схема включения транзистора с общим коллектором
- •6.8. Режимы работы транзистора
- •6.9. Работа транзистора в ключевом режиме
- •6.10. Малосигнальные и собственные параметры транзисторов
- •6.11. Силовые транзисторные модули
- •6.12. Параметры биполярных транзисторов
- •6.13. Классификация и системы обозначений (маркировка) транзисторов
- •6.14. Полевые транзисторы
- •6.14.1. Полевой транзистор с управляющим p-n-переходом
- •6.14.2. Вольт-амперные характеристики полевого транзистора
- •6.14.3. Основные параметры полевого транзистора
- •6.14.4. Полевые транзисторы с изолированным затвором
- •6.14.4.1. Мдп-транзисторы со встроенным каналом
- •6.14.4.2. Мдп-транзистор с индуцированным каналом
- •6.14.5. Достоинства и недостатки полевых транзисторов
- •6.15. Технологии изготовления транзисторов
- •6.16. Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
- •6.17. Силовые модули на основе igbt-транзисторов
- •7. Тиристоры
- •7.1 Назначение и классификация
- •7.2. Диодные и триодные тиристоры
- •7.3. Переходные процессы при включении и выключении тиристора
- •7.3.1. Переходные процессы при включении тиристора
- •7.3.2. Переходные процессы при выключении тиристора
- •7.4. Основные параметры тиристоров
- •7.5. Маркировка силовых тиристоров
- •7.6. Лавинные тиристоры
- •7.7. Симметричные тиристоры (симисторы)
- •7.8. Полностью управляемые тиристоры
- •7.9. Специальные типы тиристоров
- •7.9.1. Оптотиристоры
- •7.9.2. Тиристоры с улучшенными динамическими свойствами
- •7.9.2.1. Тиристоры тд (динамические)
- •7.9.2.2. Тиристоры тб (быстродействующие)
- •7.9.2.3. Тиристоры тч (частотные)
- •7.9.3. Тиристор, проводящий в обратном направлении (асимметричный)
- •7.9.4. Тиристор с обратной проводимостью (тиристор-диод)
- •7.9.5. Комбинированно-выключаемый тиристор (квк)
- •7.9.6. Полевой тиристор
- •7.10. Конструкции тиристоров
- •8. Групповое соединение полупроводниковых приборов
- •8.1. Неравномерности распределения нагрузки при групповом соединении
- •8.2. Параллельное соединение полупроводниковых приборов
- •8.3. Последовательное соединение полупроводниковых приборов
- •8.4. Параллельно-последовательное соединение полупроводниковых приборов
- •9. Охлаждение силовых полупроводниковых приборов
- •9.1. Способы охлаждения полупроводниковых приборов
- •9.2. Воздушное естественное и принудительное охлаждение
- •9.3. Испарительное охлаждение с промежуточным теплоносителем
- •9.4. Сравнение систем охлаждения
6.16. Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
Биполярный транзистор с изолированным затвором (IGBT – Insulated Gate Bipolar Transistor) – полностью управляемый полупроводниковый прибор, в основе которого трехслойная структура. Его включение и выключение осуществляются подачей и снятием положительного напряжения между затвором и истоком. На рис. 6.41 приведено условное обозначение IGBT-транзистора.
Рис. 6.41. Условное обозначение IGBT-транзистора
Биполярные транзисторы с изолированным затвором являются продуктом развития технологии силовых транзисторов со структурой МОП, управляемых электрическим полем (MOSFET – Metal-Oxid-Semiconductor-Field-Effect-Transistor) и сочетают в себе два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления). Эквивалентная схема включения двух транзисторов приведена на рис. 6.42.
Прибор введен в силовую цепь выводами биполярного транзистора – Е (эмиттер) и С (коллектор), а в цепь управления – выводом G (затвор).
Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединение эмиттера и стока (D), базы и истока (S) являются внутренними.
Рис. 6.42. Эквивалентная схема включения двух транзисторов в составе IGBT-транзистора
Сочетание двух приборов в одной структуре позволило объединить достоинства биполярного и полевого транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включенном состоянии, малую мощность сигнала управления, способность выдерживать высокие значения обратного напряжения, хорошие температурные характеристики.
Схематичный разрез структуры IGBT-транзистора приведен на рис. 6.43. Биполярный транзистор образован слоями p+ (эмиттер), n (база), p (коллектор). Полевой транзистор образован слоями n (исток), n+ (сток) и металлической пластиной (затвор). Слои p+ и p имеют внешние выводы, включаемые в силовую цепь. Затвор имеет вывод, включаемый в цепь управления.
Процесс включения биполярного транзистора с изолированным затвором можно разделить на два этапа: после подачи положительного напряжения между затвором и истоком происходит открытие полевого транзистора (формируется (индуцируется) n-канал между истоком и стоком). Движение зарядов из области n в область p приводит к открытию биполярного транзистора и возникновению тока от эмиттера к коллектору. Таким образом полевой транзистор управляет работой биполярного.
Как отмечалось выше, для обозначения электродов IGBT-транзистора использованы термины эмиттер, коллектор и затвор. Строго говоря, в IGBT-транзисторах имеются две биполярные структуры p-n-p- и n-p-n-типа. Названия выводов IGBT-транзистора могут представляться непривычными (особенно это относится к коллектору, так как фактически он подключен к эмиттеру силового биполярного транзистора p-n-p-типа). И, тем не менее, эти названия общеприняты.
Рис. 6.43. Схематичный разрез структуры IGBT-транзистора