
- •Линейная алгебра и геометрия.
- •1.Определители и их свойства.
- •2.Миноры и алгебраические дополнения. Теорема о разложении опред. По элементам строки или столбца.
- •3.Системы трех линейных уравнений с тремя неизвестными, правило Крамера.
- •4. Матрицы, действия над матрицами.
- •5. Теорема о ложном разложении опред. Вычисление произвед. Квадратной матрицы на ее присоединенную.
- •6.Обратная матрица. Матричный способ решения систем линейных уравнений.
- •7.Векторы. Сложение векторов и умножение их на число.
- •10.Система координат. Выражение координат вектора через координаты его конца и начала.
- •11. Деление отрезка в данном отношении.
- •12.Прямоугольная система координат. Длина вектора. Расстояние между двумя точками.
- •14.Скалярное произведение и его свойства.
- •16.Векторное произведение и его свойства. Геометрический смысл модуля.
- •17.Вычисление координат векторного произведения. Применение к вычислению площадей.
- •18 Смешанное произведение векторов и его геометрический смысл.
- •19 Вычисление смешанного произведения в координатах. Признак компланарности трех векторов
- •20. Уравнение прямой на плоскости, проходящей через данную точку перпендикулярно данному вектору.
- •21. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.
- •22. Уравнение плоскости, проходящей через данную точку параллельно двум данным векторам.
- •23. Уравнение плоскости проходящей через три данные точки.
- •24. Условие параллельности вектора и плоскости. Неполные уравнения плоскости.
- •25.Расстояние от точки до плоскости
- •26. Угол между двумя прямыми на плоскости. Условия параллельности и перпендикулярности прямых.
- •28.Уравнение прямой, проходящей через данную точку параллельно данному вектору. Угол между прямыми.
- •29. Приведение общих уравнений прямой в пространстве к каноническому виду.
- •30.Эллипс: геометрическое определение, вывод и исследование канонического уравнения
- •32.Парабола: геометрическое определение, вывод и исследование канонического уравнения
- •Дифференциальное исчисление.
- •1.Определение предела функции. Бесконечно малые. Представление функции в виде суммы константы и бесконечно малой.
- •2.Свойства бесконечно малых.
- •3. Предел суммы, произведения и частного.
- •4. Предел функции на бесконечности. Предел числовой последовательности.
- •5. Теорема о «двух милиционерах».
- •6. Первый замечательный предел.
- •7.Теорема о пределе монотонной ограниченной функции. Второй замечательный предел.
- •8. Сравнение бесконечно малых. Эквивалентные бесконечно малые.
- •9. Таблица эквивалентных бесконечно малых.
- •10.Непрерывность функции в точке. Односторонние пределы. Классификация точек разрыва.
- •13. Определение производной и ее геометрический смысл. Уравнение касательной и нормали к графику функции в данной точке.
- •14. Доказать, что дифференцируемая функция непрерывна.
- •15.Производная суммы и произведения функций.
- •17.Производная сложной функции.
- •20.Дифференциал функции: определение и формула для вычисления. Эквивалентность дифференцируемости и существования производной.
- •21.Теорема Ферма и Ролля.
- •23.Теорема коши об отношении приращений двух функций на отрезке
- •24.Правила Лопиталя
- •26.Возрастание и убывание функции. Доказать что, при положительной производной функция возрастает.
- •27.Точки экстремума,достаточное условие экстремума для первой производной.
- •28.Точки экстремума. Достаточное условие экстремума по второй производной.
- •29.Выпуклость и вогнутость ,точки перегиба связь со второй производной
- •31.Частные производные. Независимость смешанных частных производных от порядка дифференцирования.
- •32.Дифференцируемость функций нескольких переменных. Дифференциал функций.
- •33.Частные производные сложной функции.
- •34.Неявные функции и их производные.
- •35.Экстремумы функций двух переменных. Необходимое условие экстремума.
- •36.Достаточные условия экстремума функции двух переменных.
26.Возрастание и убывание функции. Доказать что, при положительной производной функция возрастает.
Возрастание
и убывание функции, функция y = f (x)
называется возрастающей на отрезке [a,
b], если для любой пары точек х и х', а £ х
< х' £ b выполняется неравенство f (x) £
f (x'), и строго возрастающей — если
выполняется неравенство f (x) < f (x').
Аналогично определяется убывание и
строгое убывание функции. Например,
функция у = х2 (рис., а) строго возрастает
на отрезке [0,1], а
(рис.,
б) строго убывает на этом отрезке.
Возрастающие функции обозначаются f
(x), а убывающие f (x)¯. Для того чтобы
дифференцируемая функция f (x) была
возрастающей на отрезке [а, b], необходимо
и достаточно, чтобы её производная f'(x)
была неотрицательной на [а, b].
Наряду с возрастанием и убыванием функции на отрезке рассматривают возрастание и убывание функции в точке. Функция у = f (x) называется возрастающей в точке x0, если найдётся такой интервал (a, b), содержащий точку x0, что для любой точки х из (a, b), х> x0, выполняется неравенство f (x0) £ f (x), и для любой точки х из (a, b), х< x0, выполняется неравенство f (x) £ f (x0). Аналогично определяется строгое возрастание функции в точке x0. Если f'(x0) > 0, то функция f (x) строго возрастает в точке x0. Если f (x) возрастает в каждой точке интервала (a, b), то она возрастает на этом интервале.
Геометрический смысл связи знака производной с направлением изменения функции легко виден из геометрического смысла производной: если угловой коэффициент касательной к графику (равный производной) положителен, то угол наклона касательной -- острый, что соответствует графику возрастающей функции. Если же угловой коэффициент отрицателен, то угол наклона касательной -- тупой, и тогда функция убывает.
Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.
27.Точки экстремума,достаточное условие экстремума для первой производной.
Функция y=f ( x ) называется возрастающей ( убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство f (x 1 ) < f (x 2 ) ( f (x 1 ) > f (x 2 ))
Если дифференцируемая функция y = f ( x ) на отрезке [ a , b ] возрастает (убывает), то ее производная на этом отрезке f ¢ ( x ) > 0 ( f ¢ ( x ) < 0). Точка x о называется точкой локального максимума ( минимума ) функции f ( x ), если существует окрестность точки x о , для всех точек которой верно неравенство f ( x ) £ f ( x о ) ( f ( x ) ³ f ( x о )). Точки максимума и минимума называются точками экстремума, а значения функции в этих точках - ее экстремумами. Необходимые условия экстремума . Если точка x о является точкой экстремума функции f ( x ), то либо f ¢ ( x о ) = 0, либо f ¢ ( x о ) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек. Первое достаточное условие. Пусть x о - критическая точка. Если f ¢ ( x ) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.