
- •3. Напряжённость электрического по́ля, силовые линии электрического поля.
- •4. Поток вектора напряженности электрического поля и его физический смысл.
- •5. Принцип суперпозиции электрических полей:
- •6. Электрический диполь. Напряженность электрического поля на оси диполя.
- •7. Теорема Остроградского-Гаусса для электрического поля в вакууме:
- •8. Применение теоремы Остроградского-Гаусса для расчета электрического поля равномерно заряженной бесконечной плоскости.
- •9. Применение теоремы Остроградского-Гаусса для расчета электрического поля равномерно заряженной бесконечной сферической поверхности.
- •10. Применение теоремы Остроградского-Гаусса для расчета электрического поля равномерно заряженного шара.
- •11. Работа сил электростатического поля.
- •12. Теорема о циркуляции напряженности электрического поля.
- •14. Связь напряженности и потенциала электрического поля.
- •15. Типы диэлектриков. Поляризация диэлектриков.
- •16. Вектор электрического смещения. Теорема Остроградского-Гаусса для электрического поля в диэлектрике.
- •17. Диэлектрическая проницаемость, диэлектрическая восприимчивость. Поляризованность. Условия на границе раздела диэлектриков.
- •18. Проводники в электрическом поле. Явление электростатической индукции. Электростатическая защита.
- •Электростатическая индукция в проводниках
- •Электростатическая индукция в диэлектриках
- •19. Электроемкость уединенного проводника. Конденсаторы.
- •20. Электроемкость плоского конденсатора.
- •21. Параллельное и последовательное соединения конденсаторов, вывод емкости.
- •22. Энергия системы неподвижных точечных зарядов. Энергия заряженного конденсатора.
- •23. Энергия заряженного уединенного проводника.
- •24. Энергия электростатического поля.
- •25. Электрический ток, сила и плотность тока.
- •26. Закон Ома для однородного участка цепи:
- •27. Сторонние силы. Электродвижущая сила и напряжение.
- •28. Закон Ома в дифференциальной форме.
- •29. Температурная зависимость сопротивления проводников.
- •30. Работа и мощность тока. Закон Джоуля - Ленца в интегральной и дифференциальной форме.
- •31. Закон Ома для неоднородного участка цепи.
- •32. Кпд источника тока. Полезная и полная мощьность.
- •34. Класическая электронная теория электропроводимости металов и ее обоснование.
- •37. Термоэлектронная эмиссия. Ток в вакууме. Вторичная электронная эмиссия.
- •40. Магнитное поле движущегося снаряда.
- •42. Применение закона Био-Савара-Лапласа для вычисления магнитного поля бесконечного прямолинейного проводника с токомю
- •48. Эффект Холла. Его применение.
- •53. Вывод закона фарадея и закона сохранения энергии.
- •56. Вихревые токи (токи Фуко). Их применение.
- •58. Взаимная индукция. Вычисление индуктивности тока трансформатора.
- •60. Вихревые токи.
- •63. Диа и парамагнетизм
34. Класическая электронная теория электропроводимости металов и ее обоснование.
Исходя
из представлений о свободных электронах,
Друде разработал классическую теорию
электропроводности металлов, которая
затем была усовершенствована Лоренцем.
Друде предположил, что электроны
проводимости в металле ведут себя
подобно молекулам идеального газа. В
промежутках между соударениями они
движутся совершено свободно, пробегая
в среднем некоторый путь
.
Правда в отличие от молекул газа , пробег
которых определяется соударениями
молекул друг с другом, электроны
сталкиваются преимущественно не между
собой, а с ионами, образующими
кристаллическую решетку металла. Эти
столкновения приводят к установлению
теплового равновесия между электронным
газом и кристаллической решеткой.
Полагая, что на электронный газ могут
быть распространены результаты
кинетической теории газов, оценку
средней скорости теплового движения
электронов можно произвести по формуле
.
Для комнатной температуры (
300К) вычисление по этой формуле приводит
к следующему значению:
.
При включении поля на хаотическое
тепловое движение, происходящее, со
скоростью
,
накладывается упорядоченное движение
электронов с некоторой средней скоростью
.
Величину этой скорости легко оценить,
исходя из формулы, связывающей плотность
тока j с числом n носителей в единице
объема, их зарядом е и средней скоростью
:
|
(18.1) |
Предельная допустимая техническими нормами плотность тока для медных проводов составляет около 10 А/мм2 = 107 А/м2. Взяв для n=1029 м-3, получим
Таким
образом, даже при больших плотностях
тока средняя скорость упорядоченного
движения зарядов в 108
раз меньше средней скорости теплового
движения
.
35. Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:
J = σE
где:
J — вектор плотности тока,
σ — удельная проводимость,
E — вектор напряжённости электрического поля.
Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).
Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.
36.Электрическая проводимость (электропроводность, проводимость) — это величина, обратная электрическому сопротивлению. В СИ единицей электрической проводимости является сименс. Не следует путать электрическую проводимость, которая является характеристикой объекта (например, куска проволоки или резистора) и удельную электропроводность (характеристику вещества).Связь коэффициента теплопроводности K с удельной электрической проводимостью σ устанавливает закон Видемана — Франца:
K/ σ = ((π2/3)(k/e)2)T
где k — постоянная Больцмана, e — заряд электрона.
Работа выхода электронов из металла.
Работа которую нужно затратить для удаления электрона из металла в вакуум называется работой выхода. Электрон при выходе должен преодолеть задерживающее его эл. поле двойного слоя. Разность потенциалов в этом слое, называемая поверхностным скачком потенциала, определяется работой выхода электрона из металла. ??=A/e . Работа выхода выражается в электрон вольтах. 1 эВ равен работе совершаемой силами поля при перемещении элементарного эл. заряда при прохождении им разности потенциалов 1В.