
- •3. Напряжённость электрического по́ля, силовые линии электрического поля.
- •4. Поток вектора напряженности электрического поля и его физический смысл.
- •5. Принцип суперпозиции электрических полей:
- •6. Электрический диполь. Напряженность электрического поля на оси диполя.
- •7. Теорема Остроградского-Гаусса для электрического поля в вакууме:
- •8. Применение теоремы Остроградского-Гаусса для расчета электрического поля равномерно заряженной бесконечной плоскости.
- •9. Применение теоремы Остроградского-Гаусса для расчета электрического поля равномерно заряженной бесконечной сферической поверхности.
- •10. Применение теоремы Остроградского-Гаусса для расчета электрического поля равномерно заряженного шара.
- •11. Работа сил электростатического поля.
- •12. Теорема о циркуляции напряженности электрического поля.
- •14. Связь напряженности и потенциала электрического поля.
- •15. Типы диэлектриков. Поляризация диэлектриков.
- •16. Вектор электрического смещения. Теорема Остроградского-Гаусса для электрического поля в диэлектрике.
- •17. Диэлектрическая проницаемость, диэлектрическая восприимчивость. Поляризованность. Условия на границе раздела диэлектриков.
- •18. Проводники в электрическом поле. Явление электростатической индукции. Электростатическая защита.
- •Электростатическая индукция в проводниках
- •Электростатическая индукция в диэлектриках
- •19. Электроемкость уединенного проводника. Конденсаторы.
- •20. Электроемкость плоского конденсатора.
- •21. Параллельное и последовательное соединения конденсаторов, вывод емкости.
- •22. Энергия системы неподвижных точечных зарядов. Энергия заряженного конденсатора.
- •23. Энергия заряженного уединенного проводника.
- •24. Энергия электростатического поля.
- •25. Электрический ток, сила и плотность тока.
- •26. Закон Ома для однородного участка цепи:
- •27. Сторонние силы. Электродвижущая сила и напряжение.
- •28. Закон Ома в дифференциальной форме.
- •29. Температурная зависимость сопротивления проводников.
- •30. Работа и мощность тока. Закон Джоуля - Ленца в интегральной и дифференциальной форме.
- •31. Закон Ома для неоднородного участка цепи.
- •32. Кпд источника тока. Полезная и полная мощьность.
- •34. Класическая электронная теория электропроводимости металов и ее обоснование.
- •37. Термоэлектронная эмиссия. Ток в вакууме. Вторичная электронная эмиссия.
- •40. Магнитное поле движущегося снаряда.
- •42. Применение закона Био-Савара-Лапласа для вычисления магнитного поля бесконечного прямолинейного проводника с токомю
- •48. Эффект Холла. Его применение.
- •53. Вывод закона фарадея и закона сохранения энергии.
- •56. Вихревые токи (токи Фуко). Их применение.
- •58. Взаимная индукция. Вычисление индуктивности тока трансформатора.
- •60. Вихревые токи.
- •63. Диа и парамагнетизм
18. Проводники в электрическом поле. Явление электростатической индукции. Электростатическая защита.
Наличие свободных электрических зарядов в проводниках можно обнаружить в следующих опытах. Установим на острие металлическую трубу. Соединив проводником трубу со стержнем электрометра, убедимся в том, что труба не имеет электрического заряда.
Наэлектризуем эбонитовую палочку и поднесем к одному концу трубы. Труба поворачивается на острие, притягиваясь к заряженной палочке. Следовательно, на том конце трубы, который расположен ближе к эбонитовой палочке, появился электрический заряд, противоположный по знаку заряду палочки. Если на одном конце трубы под действием электрического поля заряженной палочки появился положительный электрический заряд, то на другом конце в соответствии с законом сохранения электрического заряда должен появиться равный ему по абсолютному значению отрицательный электрический заряд.
Опыт показывает, что действительно две части металлического тела, разделенного в электрическом поле, обладают электрическими зарядами (рис. 114). Эти заряды равны по модулю и противоположны по знаку.
Явление разделения разноименных зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией.
При внесении в электрическое поле тела из проводника свободные заряды в нем приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Движение зарядов прекращается только тогда, когда напряженность электрического поля в проводнике становится равной нулю.
Свободные заряды перестают перемещаться вдоль поверхности проводящего тела при достижении такого распределения, при котором вектор напряженности электрического поля в любой точке перпендикулярен поверхности тела. Поэтому в электрическом поле поверхность проводящего тела любой формы является эквипотенциальной поверхностью.
Электростатическая индукция— явление наведения собственного электростатического поля, при действии на тело внешнегоэлектрического поля. Явление обусловлено перераспределениемзарядоввнутри проводящих тел, а также поляризацией внутренних микроструктур[1]у непроводящих тел. Внешнее электрическое поле может значительно исказиться вблизи тела с индуцированным электрическим полем.
Электростатическая индукция в проводниках
Перераспределение зарядов в хорошо проводящих металлах при действии внешнего электрического поля происходит до тех пор, пока заряды внутри тела практически полностью не скомпенсируют внешнее электрическое поле. При этом на противоположных сторонах[2]проводящего тела появятся противоположныенаведённые(индуцированные) заряды.
Электростатическая индукция в диэлектриках
Диэлектрики в электростатическом поле поляризуются.
Электростатическая защита— помещение приборов, чувствительных к электрическому полю, внутрь замкнутой проводящей оболочки для экранирования от внешнего электрического поля.
Это явление связано с тем, что на поверхности проводника (заряженного или незаряженного), помещённого во внешнее электрическое поле, заряды перераспределяются так (явление электрической индукции), что создаваемое ими внутри проводника поле полностью компенсирует внешнее.