- •1.Структурная схема системы радиосвязи. Основные показатели канала связи.
- •1.Последовательный колебательный контур. Резонанс напряжений, добротность, коэффициент передачи, характеристическое сопротивление, полоса пропускания.
- •2. Основные параметры сигналов: длительность, ширина спектра и динамический диапазон. Примеры: речевые (телефонные), вещательные, телевизионные, телеграфные сигналы, сигналы передачи данных.
- •3.Пояснить принцип амплитудно-импульсной модуляции.
- •3.Параллельный колебательный контур. Резонанс токов. Векторные диаграммы параллельного колебательного контура.
- •3. Структурная схема системы связи. Многоканальные системы передачи.
- •4. Привести функциональную схему индивидуального аим тракта и по ней пояснить процесс дискретизации сигнала.
- •4. Структурная схема радиопередающего устройства (рпду), принцип действия радиопередатчиков. Классификация рпду.
- •4. Помехи и искажения в каналах.
- •5. Пояснить процесс формирования канального аим сигнала.
- •5. Структурная схема генератора.
- •5. Кодирование и модуляция. Демодуляция и декодирование. Цифровое кодирование непрерывных сообщений.
- •6. Постройте временные диаграммы функционирования аим индивидуального тракта и по ним поясняете процессы дискретизации, демодуляции и временного разделения каналов.
- •6. Приведите принципиальную схему и принцип работы автогенератора с трансформаторной связью.
- •6.Описание сигналов посредством математических моделей
- •7. Поясните процесс квантования.
- •7. Приведите эквивалентные Трехточечные схемы автогенераторов.
- •7. Классификация сообщений, сигналов и помех.
- •8. Поясните процесс кодирования квантованных сигналов.
- •8. Баланс фаз и баланс амплитуд в автогенераторе. Стационарный режим автогенератора.
- •8.Детерминированные и случайные процессы, их математические модели. Прямые и косвенные модели процессов.
- •9. Что называется кодом? Какие коды, применяемые в системах многоканальной связи, Вы знаете?
- •10. Дестабилизирующие факторы в аг. Рекомендации по улучшению стабильности частоты аг.
- •10. Разложение сигналов в обобщенный ряд Фурье
- •11. Привести и пояснить основные характеристики кодов.
- •11. Принципиальная схема генератора с внешним возбуждением.
- •11. Спектральное и временное представление сигналов.
- •12. Какой цифровой сигнал можно назвать групповым икм сигналом? Поясните принцип формирования.
- •12. График напряжений и токов в гвв. Физические процессы в схеме гвв.
- •13. Привести основные функциональные узлы цсп с икм-врк.
- •13. Приведите графики напряжений и токов в гвв.
- •13. Случайные процессы и их основные характеристики
- •14. Пояснить принцип работы оконечной станции цифровой системы передачи с икм-врк.
- •14. Приведите принципиальную схему транзисторного гвв.
- •14. Стационарные и нестационарные сп.
- •15. Какое устройство называют канальным амплитудно-импульсным модулятором и селектором? Основные требования, принцип работы.
- •15. Режим работы гвв 1-го рода.
- •15. Эргодическое свойство стационарных сп. Особенности нестационарных процессов.
- •16. Для чего предназначены кодеры и декодеры цсп с икм-врк? Какие существуют кодеры?
- •16. Режимы работы гвв 2-го рода.
- •16. Функции корреляции и их свойства.
- •17. Поясните общие принципы построения генераторного оборудования в цсп.
- •17. Какими параметрами характеризуются импульсы в режиме колебаний 2-го рода?
- •17.Гауссовский сп.
- •Одномерная плотность вероятности нормального процесса определяется выражением
- •18. Какой генератор называют задающим? Поясните принцип работы.
- •18. Формирование сигналов амплитудной модуляции
- •19. Что является делителем частоты? Привести функциональную схему.
- •19. Гармонический анализ импульсов выходного тока генератора. Коэффициенты Берга.
- •19. Ам с подавленной несущей (ам-пн), однополосная модуляция (ом).
- •20. Пояснить иерархический принцип построения цсп. Требования, виды объединения, стандарты.
- •20. Чему равен кпд выходной цепи генератора в режиме колебаний 1-го и 2-го рода?
- •20. Временное, спектральное и векторное представление ам-колебаний. Формирование модулированных сигналов в нелинейных цепях.
- •21. Поясните принципы объединения цифровых потоков в pdh. Какие существуют стандарты?
- •21. Ключевой режим работы транзистора.
- •21. Амплитудная модуляция. Схемы модуляторов.
- •22. Поясните принцип построения цикла первичного цифрового потока е1.
- •22. Схемы питания генератора. Каким требованиям должна удовлетворять выходная цепь генератора?
- •23. Поясните принцип построения цикла первичного цифрового потока ds1.
- •23. Использование параметрических и нелинейных элементов для детектирования. Схема детектора сигналов ам.
- •24. Какие существуют методы асинхронного объединения цифровых потоков? Виды, особенности.
- •24. Основные параметры гвв.
- •24. Формирование и детектирование сигналов угловой модуляции
- •25. Поясните работу схемы тракта передачи оборудования временного группообразования (овг) объединения асинхронных потоков.
- •25. Статическая, динамическая и нагрузочная характеристики гвв?
- •26. Поясните работу схемы тракта приема оборудования временного группообразования (овг) объединения асинхронных потоков.
- •26. Узкополосная и широкополосная угловая модуляция, различие в спектрах чм и фм сигналов.
- •27. Поясните принцип синфазно-синхронного объединения и разделения цифровых потоков.
- •27. Методы формирования чм и фм сигналов. Принципы детектирования сигналов угловой модуляции в нелинейных цепях.
- •28. Поясните принцип синхронного объединения цифровых потоков.
- •29. Поясните принцип формирования цифрового потока stm-1 на основе компонентных потоков е1, е3, е4.
- •29. Формирование и детектирование сигналов, модулированных дискретными сообщениями.
- •30. Поясните принцип работы запоминающего устройства оборудования временного группообразования.
- •30 Однополосная модуляция. Балансная модуляция.
- •30. Модуляция и детектирование импульсного переносчика. Методы амплитудно-импульсной модуляции. Спектры импульсно-модулированных колебаний при детерминированных и случайных сообщениях.
- •31. Поясните принцип работы временного детектора оборудования временного группообразования.
- •31. Сравните два вида модуляции - ам и обп. Приведите схему Кана.
- •32. Поясните принцип работы передатчика и приемника команд согласования скоростей оборудования временного группообразования.
- •32. Помехоустойчивость амплитудной и угловой модуляции. Помехоустойчивость приема при использовании неоптимальных детекторов.
- •33. Поясните принцип работы устройства фазовой автоподстройки частоты оборудования временного группообразования.
- •33. Приведите методы осуществления угловой модуляции.
19. Что является делителем частоты? Привести функциональную схему.
Схемы делителей различного назначения (разрядных, канальных, циклов и сверхциклов) легко реализуются на основе счетчиков, регистров, дешифраторов и других логических схем.
Функциональная
схема делителя разрядов ДР
(для
)
с использованием трехразрядного
двоичного счетчика на триггерах
показана на рисунке 4.7,а.
Реализовать
такой ДР
можно
и применением кольцевого счетчика из
восьми триггеров
,
рисунок 4.7,б. Аналогичным образом можно
построить и другие делители. На практике
более широкое распространение получил
первый вариант, который для своей
реализации требует меньшего числа
триггеров.
Рисунок 4.7 - Функциональные схемы делителей разрядов

19. Гармонический анализ импульсов выходного тока генератора. Коэффициенты Берга.

Периодическая последовательность косинусоидальных импульсов тока по теореме Фурье
все
гармоники зависят от угла отсечки θ и
амплитуды импульса I
вых.
-коэффициенты
пропорциональности Берга.
зависит от
и показывает какую часть амплитуды
импульса составляет каждая составляющая
Коэффициенты Берга зависят от
и
показывают, какую часть амплитуды
импульса составляет каждая составляющая.
Графики Берга показывают зависимость
энергопоказателей ГВВ от
- КПД.
19. Ам с подавленной несущей (ам-пн), однополосная модуляция (ом).
АМ с подавленной несущей
При использовании АМ с подавленной несущей к модулирующему сигналу не добавляется постоянная составляющая:
sAM-ПН(t)=ksM(t)cos(ω0t+φ0).
Если модулирующий сигнал является знакопеременным, множитель перед функцией cos может становиться отрицательным (это называется перемодуляцией). В моменты смены знака модулирующего сигнала фаза АМ-сигнала с подавленной несущей претерпевает скачки на 180°.
Ширина спектра АМ-сигнала с подавленной несущей, как и в случае обычной АМ, в два раза больше, чем у модулирующего сигнала.
Несущая частота будет действительно подавлена только в том случае, если модулирующий сигнал не имеет постоянной составляющей. Тогда спектр АМ-сигнала с подавленной несущей будет содержать только верхнюю и нижнюю боковые полосы.
ОМ
Рассмотренная в предыдущем разделе двухполосная АМ с подавленной несущей имеет преимущества перед обычной АМ только в энергетическом плане - за счет устранения несущего колебания. Ширина спектра при этом по-прежнему вдвое больше, чем у модулирующего сигнала. Однако спектры двух боковых полос АМ-сигнала являются зеркальным отражением друг друга, то есть они несут одну и ту же информацию. Поэтому одну из боковых полос можно удалить. Получающаяся модуляция называется однополосной (английский термин - Single Side Band, SSB).
В зависимости от того, какая боковая полоса сохраняется, говорят об однополосной модуляции с использованием верхней или нижней боковой полосы. Формирование однополосного сигнала проще всего пояснить, приведя несколько спектральных графиков:
Итак, однополосный сигнал можно представить как сумму двух АМ-сигналов, несущие колебания которых имеют одну и ту же частоту, но сдвинуты по фазе друг относительно друга на 90°. Амплитудными функциями этих АМ-сигналов являются модулирующий сигнал и его квадратурное дополнение. В зависимости от того, складываются эти два АМ-сигнала или вычитаются (а точнее, какая из двух несущих опережает другую по фазе), формируется однополосный сигнал с верхней или нижней боковой полосой.
Билет 20
