Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект лекций 2.doc
Скачиваний:
21
Добавлен:
02.04.2015
Размер:
708.1 Кб
Скачать

5.3. Полупроводниковые материалы

К полупроводникам относятся материалы с удельным электрическим сопротивлением 10-5- 108Ом· м. Простые полупроводники: германий, кремний, се­лен, теллур, бор, углерод, фосфор, сера, сурьма, мышьяк, серое оло­во, йод, и некоторые химические соединения. Полупроводники облада­ют рядом характерных только для них свойств, резко отличающихся от проводников: в большом интервале температур их удельное сопротивление уменьшается, т.е. они имеют отрицательный температурный коэф­фициент удельного сопротивления; при введении в полупроводник малого количества примесей их удельное сопротивление резко изменяется; полупроводники чувствительны к различного рода внешним воз­действиям - свету, ядерному излучению, электрическому и магнит­ному полям, давлению и т.д.

Полупроводниками являются соединения различных элементов, соответствующие общим фор­мулам:

  • двойные (бинарные) соединения: A|BV||(CuCl,AgBr);A|BV|(Cu2O,CuS);A|BV(KSb,K3Sb); А||BV||(ZnCI2,CdCl2);A||BV|(ZnO,ZnS, СdS);A||BV(ZnSb,Mg3Sb2);A||B|V(Mg2Sn, СаSi);A|||BV|(GaS);A|||BV(GaP,GaAs,InSb);A|VB|V;AVBV|;AV|BV|;

  • тройные соединения: A|B|||BV|2(CuAlS2,CuInS2);A|BVBV|2;A|BV|||BV|||2 ; A|VBVBV|2;

  • твердые растворы: GeSi,GaAs1-xPxи др.

Собственные и примесные полу­проводники. Как и в металлах, электрический ток в полупровод­никах связан с дрейфом носителей заряда. Но если в металлах нали­чие свободных электронов обус­ловлено природой металлической связи, то появление носителей за­ряда в полупроводниках определя­ется рядом факторов, важнейшими из которых являются чистота ма­териала и температура. В зависи­мости от степени чистоты полу­проводники подразделяют на соб­ственные и примесные.

Полупроводник, в котором в результате разрыва связей образу­ется равное количество свободных электронов и дырок, называется собственным.

Каждый атом на своей внешней оболочке содержит четыре элект­рона. Каждый из этих электронов создает пару с электроном соседнего атома, образуя ковалентную связь. С повышением температуры некоторые электроны разрывают ковалентную связь и переходят в зону проводимости (рис.27, а).

Рис.27

В кристалле собственного полу­проводника каждому электрону в зоне проводимости соответству­ет одна дырка, оставленная им в валентной зоне. В этом случае свободный электрон обладает большей энергией, на значение энергии ши­рины запрещенной зоны. Так как при каждом акте возбуждения в собственном полупро­воднике одновременно создаются два носителя заряда противоположных знаков, то общее количество носителей заряда в 2 раза боль­ше числа электронов в зоне проводимости. При приложении к кристаллу внешнего электрического поля сво­бодные электроны перемещаются против поля (из-за отрицатель­ного заряда), а дырки - в направлении поля. Но электроны, хотя и движутся в противоположном на­правлении, создают обычный ток, совпадающий с внешним прило­женным полем. Следовательно, электронный и дырочный токи те­кут в одном и том же направлении и поэтому складываются.

Для большинства полупровод­никовых приборов используются примесные полупроводники. Полу­проводник, имеющий примеси, назы­вается примесным,а проводимость, созданная введенной примесью, на­зываетсяпримесной проводимостью.

Если в полупроводник IV груп­пы таблицы Менделеева ввести в качестве примеси мышьяк, то ато­му примеси для завершения ковалентных связей с атомами основно­го вещества необходимо четыре ва­лентных электрона. Пятый электрон атома примеси в ковалентной связи не участвует. Со своим атомом он связан силой ку-лоновского взаимодействия. Энер­гия этой связи невелика (сотые доли электрон-вольта). Так как при ком­натной температуре тепловая энер­гияkT=0,026 эВ, то очевидно, что при этой температуре происходит ионизация примесных атомов мы­шьяка вследствие отрыва пятого ва­лентного электрона, который ста­новится свободным.

Наряду с ионизацией примеси может происходить и ионизация атомов основного вещества. Но в области температур ниже той, при которой имеет место значительная собственная проводимость, число электронов, оторванных от примеси, значительно больше числа электронов и дырок, образовавшихся в результате разрыва ковалентных связей. Следовательно, преобладающее значение в проводимости кристалла имеют электроны, и поэтому они назы­ваются основныминосителями заряда, а дырки -неосновными.Такой полупроводник называется электронным, или п-типа, а при­месь, отдающая электроны, носит названиедонорной.

На энергетической диаграмме наличие примеси в решетке по­лупроводника характеризуется появлением локального энергети­ческого уровня, лежащего в запрещенной зоне. Так как при ионизации атома мышьяка образуется свободный электрон и для его отрыва требуется значительно меньшая энергия, чем для разрыва ковалентных связей кремния, то энергетический уро­вень донорной примеси должен располагаться в запрещенной зоне на небольшой глубине под «дном» зоны проводимости (рис. 27, б).

Если в полупроводник IV группы таблицы Менделеева ввести элемент III группы, например алюминий, то все три валентных элек­трона примесного атома будут участвовать в образовании кова­лентных связей, одна из четырех связей с ближайшими атомами основного вещества окажется незавершенной. В неза­полненную связь около атома алюминия благодаря тепловой энер­гии может перейти электрон от соседнего атома основного веще­ства. При этом образуются отрицательный ион алюминия и сво­бодная дырка, перемещающаяся по связям основного вещества и, следовательно; принимающая участие в проводимости кристалла.

Примесь, захватывающая электроны, называется акцепторной. Для образования свободной дырки за счет перехода электрона от атома основного вещества к атому примеси требуется значительно меньше энергии, чем для разрыва ковалентных связей кремния. Поэтому количество дырок может быть значительно больше коли­чества свободных электронов и проводимость кристалла будет дырочной. В таком полупроводнике основными носителями заря­да являются дырки, а неосновными - электроны. Полупроводник с акцепторными примесями называется дыроч­ным полупроводником илир-типа.

На энергетической диаграмме, представленной на рис.27,в,ак­цепторная примесь имеет энергетический уровеньWa, расположен­ный на небольшом расстоянии над потолком валентной зоны. При ионизации акцепторной примеси происходит переход электрона из валентной зоны на уровеньWa,а в валентной зоне появляется дыр­ка, которая и является свободным носителем заряда.

В полупроводниках могут одновременно содержаться донорная и акцепторная примеси. Такие полупроводники называются ком­пенсированными.

Электропроводность полупроводников. В собственном полупроводнике носителями заряда являются свободные электроны и дырки, концентрации которых одинако­вы. При наличии внешнего электрического поля плотность элект­ронной составляющей тока, который протекает через собственный полупроводник, т. е. число электрических зарядов переносимых за единицу времени через единицу площади, перпендикулярной на­правлению электрического поля,

Jn=q·n·vn

где q= 1,6-10-19- заряд электрона, Кл; п - концентрация электро­нов зоны проводимости, м-3;vn -средняя скорость упорядоченно­го движения электронов, возникшая под действием электрическо­го поля (дрейфовая скорость), м/с.

Обычно скорость vnпропорциональна напряженности поля:

Vnn·E

где μn - коэффициент пропорциональности, называемыйподвиж­ностью,м2/(В·с).

Закон Ома в дифференциальной форме:

Jn=E·σn=E/ρn,

где σn =q·n·μn - удельная электрическая проводимость полупровод­ника, обусловленная электронами, См/м; ρ = 1/σ - удельное элект­рическое сопротивление, Ом·м.

Аналогично, дырочная составляющая плотности тока для соб­ственного полупроводника: Jp=E·q·p·μp,

где р -концентрация дырок валентной зоны, м-3; μp- подвижность дырок, м2/(В·с).

Удельная электрическая проводимость полупроводника, обус­ловленная дырками,

σp=q·p·μp.

Суммарная плотность тока через собственный полупроводник

j=jn+jp= (q·n·μn +q·p·μp)E.

Удельная электрическая проводимость собственного полупро­водника

σinp=q·n·μn+q·p·μp=q·ninp).

В примесном полупроводнике при комнатной температуре при­месь полностью ионизирована и, следовательно, проводимость оп­ределяется свободными подвижными носителями заряда, электро­нами и дырками в n- иp-полупроводниках соответственно:

σn=q·nn·μnp=q·pp·μp,

где пnи рp -концентрация основных носителей заряда электронов и дырок соответственно.

Так как концентрация и подвижность свободных носителей за­ряда зависят от температуры, то и удельная проводимость также зависит от температуры. При этом для концентрации свободных носителей заряда характерна экспоненциальная зависимость, а для подвижности - степенная. Для собственного полупроводника, у ко­торого ΔW»kT, и с учетом того, что степенная зависимость сла­бее экспоненциальной, можно записать

где ΔW -ширина запрещенной зоны;k -постоянная Больцмана; Т-абсолютная температура; σ0- множитель, не зависящий от тем­пературы; он должен выражать σ приТ=, т.е. когда все валент­ные электроны перешли в зону проводимости.

График зависимости σ(T) удобно построить, прологарифми­ровав это выражение:

lnσ =lnσ0–ΔW/kT.

Для примесного полупроводника электропроводность:

,

где ΔWa- энергия ионизации примесей.

На рис.28 представлена температурная зависимость полупроводника с различной концентрацией примеси.

Рис. 28

Повышение удельной проводимости полупроводника с увеличением Тв области низких темпера­тур обусловлено увеличением концентра­ции свободных носителей заряда за счет ионизации примеси (рис. 28, участкиab,de,kl).

Наклон примесного участка кривой за­висит от концентрации примесей. С рос­том концентрации атомов примеси в по­лупроводнике уменьшается наклон кривой к оси абсцисс, и она располагается выше. Это объясняется тем, что наклон прямой в области примесной проводимости опре­деляется энергией ионизации примеси. С увеличением концентрации примеси энер­гия ионизации уменьшается и соответ­ственно уменьшается наклон прямых.

При дальнейшем повышении температуры наступает истощение примеси - полная ее ионизация. Собственная же электропроводность заметно еще не проявляется. В этих условиях концентрация свобод­ных носителей от температуры не зависит, и температурная зависи­мость удельной проводимости полупроводника определяется зави­симостью подвижности носителей заряда от температуры. Резкое уве­личение удельной проводимости при дальнейшем росте температуры соответствует области собствен­ной электропроводности.

В сильных электрических по­лях нарушается линейность за­кона Ома j= σ·Е.Минимальную напряженность электрического поля, начиная с которой не вы­полняется линейная зависимость тока от напряжения, называюткритической.Эта граница не является резкой и определенной и зависит от природы полупровод­ника, концентрации примесей, температуры окружающей среды. Так как удельная проводимость определяется концентрацией свободных носителей заряда и их подвижностью, то линейность закона Ома нарушается в том случае, когда по крайней мере одно из этих значений зависит от напряженности электрического поля.

Если изменение абсолютного значения скорости свободного но­сителя заряда под действием внешнего поля на среднем пути меж­ду соударениями сравнимо с тепловой скоростью, то подвижность носителей заряда зависит от электрического поля, причем она мо­жет увеличиваться или уменьшаться в зависимости от температу­ры окружающей среды. Воздействие сильного электрического поля приводит к значительному росту концентрации свободных носи­телей заряда.

Под воздействием внешнего электрического поля напряженно­стью Е на полупроводник его энергетические зоны становятся на­клонными. На рис.29 представлены электрические зоны полупроводника в сильном электрическом поле.

Рис.29

В сильном электричес­ком поле при наклоне зон возможен переход электрона из валент­ной зоны и примесных уровней в зону проводимости без измене­ния энергии в процессе туннельного «просачивания» электронов через запрещенную зону. Этот механизм увеличения концентрации свободных носителей под действием сильного электрического поля называют электростатической ионизацией,которая возможна в электрических полях с напряженностью примерно 108В/м.

На рис.30 представлена зависимость проводимости полупроводника от напряженности внешнего электрического поля.

Рис.30

На рис.30 участок 1 соответствует выполнению линейности закона Ома, 2 - тер­моэлектронной ионизации, 3 -электростатической и ударной ионизации, 4 -пробою.

Проводимость твердого кри­сталлического тела изменяется от деформации из-за увеличе­ния или уменьшения (растяжение, сжатие) междуатомных расстояний приводит к изме­нению концентрации и под­вижности носителей заряда. Концентрация меняется вследствие изменения шири­ны энергетических зон полу­проводника и смещения при­месных уровней, что приво­дит к изменению энергии активации носителей заряда и, следовательно, к уменьше­нию или увеличению концен­трации. Подвижность меня­ется из-за увеличения или уменьшения амплитуды ко­лебания атомов при их сбли­жении или удалении.

Изменение удельной проводимости полупроводников при оп­ределенном виде деформации характеризует тензочувствителъность:,

которая представляет собой отношение относительного изменения удельного сопротивления к относительной деформации в данном направлении.

Фотопроводимость полупроводников. Перевод электрона в свободное состояние или образование дыр­ки может осуществляться также под воздействием света. Энергия падающего на полупроводник света передается электронам. При этом энергия, передаваемая каждому электрону, зависит от часто­ты световых колебаний и не зависит от яркости света (силы света). С увеличением яркости света возрастает число поглощающих свет электронов, но не энергия, получаемая каждым из них.

Для определенного полупроводника существует пороговая дли­на волны, определяемая энергией кванта, достаточной для возбуж­дения и перехода электрона с самого верхнего уровня валентной зоны на самый нижний уровень зоны проводимости, т.е. равная ширине запрещенной зоны. Фотопроводимость полупроводника определяется: σф=q·Δn·μn

где Δn- дополнительное число электронов, образовавшихся в по­лупроводнике вследствие облучения его светом.

Освобожденные светом электроны находятся в зоне проводи­мости очень короткое время (10-3– 10-7с). При отсутствии внешне­го электрического поля они хаотически перемещаются в между­атомных промежутках. Когда к кристаллу приложена разность по­тенциалов, они участвуют в электропроводности. После окончания освещения образца электроны переходят на более низкие энерге­тические уровни - примесные или в валентную зону. При непре­рывном освещении полупроводника устанавливается динамичес­кое равновесие между образующимися дополнительными (нерав­новесными) носителями и уходящими на нижние уровни, т.е. устанавливается динамическое равновесие между процессами ге­нерации носителей заряда и их рекомбинацией.