
- •1. Обозначения
- •2. Модуль (абсолютная величина) действительного числа
- •4. Предел функции
- •5. Бесконечно малые функции и их свойства
- •6. Эквивалентные бесконечно малые. Таблица эквивалентных бесконечно малых
- •7. Бесконечно большие функции и их связь с бесконечно малыми
- •1. Односторонние пределы
- •2. Непрерывность функции в точке
- •3. Производная функции в точке, ее геометрический и механический смысл
- •4. Арифметические действия над производными
- •5. Производная сложной и обратной функций и функции, заданной параметрически
- •6. Производные простейших элементарных функций
- •1. Логарифмическая производная
- •2. Производные и дифференциалы высших порядков
- •3. Формула Тейлора с остаточными членами в форме Пеано и Лагранжа
- •4. Применения формулы Тейлора
- •5. Правило Лопиталя
- •1. Свойства функций, непрерывных на отрезке
- •2. Монотонность функции
- •2. Локальный экстремум
- •3. Выпуклость, вогнутость, точки перегиба
- •4. Исследование функций с помощью высших производных
- •1. Первообразная и неопределенный интеграл
- •2. Замена переменной в неопределенном интеграле
- •3. Интегрирования по частям в неопределенном интеграле
- •4.Выделение полного квадрата
- •5. Определенный интеграл, его свойства и геометрический смысл
- •1. Интеграл с переменным верхним пределом
- •2. Формула Ньютона-Лейбница
- •3. Замена переменных и интегрирование по частям в определенном интеграле
- •4. Интегрирование дробно-рациональных функций
- •4. Интегрирование тригонометрических выражений
- •Лекция 7. Несобственные интегралы первого рода. Приложения интегралов: вычисление площадей, длин дуг и объёмов тел
- •1.Несобственные интегралы
- •2. Вычисление площадей плоских фигур
- •3. Вычисление длины дуги
- •4. Вычисление объёмов тел
4. Вычисление объёмов тел
С помощью определенного интеграла можно вычислять и объёмы тел. Дадим соответствующие формулы.
Теорема
6. Пусть
тело
заключено между плоскостями
и
а
площадь
его поперечного сечения плоскостью
Если функция
непрерывна на отрезке
то
объём тела
вычисляется
по формуле
Замечание
3. Если
тело
получено
вращением криволинейной трапеции
вокруг
оси
,
то объём этого тела вычисляется по
формуле
Действительно,
в этом случае поперечное сечение является
кругом радиуса
поэтому
Аналогично вычисляется объём тела,
полученного вращением вокруг оси
криволинейной трапеции
(конечно, в выписанных формулах для
предполагается,
что функции
и
непрерывны
на соответствующих отрезках).
1Здесь и всюду далее с тем, чтобы не прерывать выкладки, в квадратных скобках будем указывать соответствующие замены переменных или формулы, необходимые для преобразований исходных выражений.
2На рис. Р6: – это трапеция ограниченная сверху кривой снизу– осью , с боков– прямыми и