
- •Безопасность жизнедеятельности
- •Омск-2007
- •Оглавление
- •Введение
- •1. Теоретические основы курса «безопасность жизнедеятельности»
- •1.1. Цель, задачи курса, объекты и предметы изучения
- •1.2. Опасность, риск, безопасность, чрезвычайные ситуации
- •1.3. Принципы, методы и средства обеспечения безопасности
- •1.4. Опасные и вредные факторы среды обитания
- •1.4.1. Факторы производственной среды
- •1.4.2. Факторы бытовой (жилой) среды
- •2. Основы физиологии труда, особенности структурно-функциональной организации человека
- •2.1. Труд как высшая форма деятельности человека
- •2.2. Классификация трудовой деятельности
- •2.3. Энергетические затраты организма человека
- •2.4. Структурно-функциональные системы восприятия и компенсации организмом человека факторов среды обитания
- •Латентный период для различных анализаторов
- •2.5. Эргономические аспекты деятельности человека
- •3. Микроклимат производственных и непроизводственных помещений
- •3.1. Климат помещений, его параметры
- •3.2. Теплообмен организма человека со средой обитания
- •3.3. Гигиеническое нормирование параметров микроклимата производственных помещений
- •3.4. Системы обеспечения параметров микроклимата и состава воздуха
- •4. Вредные, отравляющие и ядовитые вещества (вояв)
- •4.1. Классификация вояв
- •4.2. Пути проникновения вояв в организм и механизм их действия
- •4.3. Основные источники химического загрязнения воздуха бытовой среды
- •4.4. Нормирование и контроль запыленности и загазованности воздушной среды
- •4.5. Вентиляционные системы как средство нормализации параметров воздушной среды
- •4.5.1. Классификация систем вентиляции
- •По месту действия вентиляция бывает
- •4.5.2. Оборудование вентиляционных систем
- •5. Производственное освещение
- •5.1. Основные светотехнические величины
- •Количественные показатели
- •Качественные показатели
- •5.2. Классификация систем освещения
- •5.3. Нормирование освещения
- •6. Акустические колебания воздушной среды
- •6.1. Шум слышимого диапазона
- •6.2. Ультразвук
- •6.3. Инфразвук
- •6.4. Методы и средства защиты от шумовых воздействий
- •7. Механические колебания
- •7.1. Источники, параметры, действие вибрации
- •7.2. Нормирование вибраций
- •7.3. Методы и средства защиты от вибрационных нагрузок
- •8. Электромагнитные поля
- •8.1. Виды и источники электромагнитных полей
- •8.1.1. Электростатические поля
- •8.1.2. Электромагнитные поля промышленной частоты
- •8.1.3. Электромагнитные поля радиочастот
- •8.2. Средства защиты от электромагнитных излучений
- •8.3. Магнитные поля мобильной связи
- •Основные характеристики систем сотовой радиосвязи
- •8.4. Лазерные излучения
- •8.5. Ультрафиолетовые излучения
- •9. Ионизирующие излучения
- •9.1. Виды и источники ионизирующих излучений
- •9.2. Критерии опасности ионизирующих излучений
- •9.3. Воздействие ионизирующих излучений
- •9.4. Защита от действия ионизирующих излучений
- •10. Производственная безопасность
- •10.1. Электробезопасность
- •10.1.1. Действие электрического тока на организм человека
- •10.1.2. Факторы, влияющие на степень поражения электрическим током
- •10.1.3. Условия поражения электрическим током
- •10.1.4. Профилактика электротравматизма
- •10.1.5. Оказание первой помощи пострадавшему от электрического тока
- •10.2. Безопасность эксплуатации установок, работающих под давлением
- •10.2.1. Меры безопасности при эксплуатации паровых и водогрейных котлов
- •10.2.2. Меры безопасности при эксплуатации сосудов и баллонов, работающих под давлением
- •10.3. Безопасность производства погрузочно-разгрузочных и подъёмно-транспортных работ
- •Применение ручного труда
- •Безопасность эксплуатации подъемно-транспортного (пт) оборудования
- •Основные причины аварий грузоподъемных кранов
- •Требования безопасности к пт оборудованию
- •11. Молниезащита зданий и сооружений
- •12. Обеспечение безопасности в чрезвычайных ситуациях
- •12.1. Чрезвычайные ситуации, их классификация
- •12.1.1. Чрезвычайные ситуации естественного происхождения
- •Классификация чрезвычайных ситуаций по масштабу последствий
- •12.1.2. Чрезвычайные ситуации техногенного происхождения
- •Взрыво- и пожаробезопасность
- •Химическое заражение окружающей среды
- •Радиационная безопасность
- •12.2. Устойчивость работы объектов экономики в чрезвычайных ситуациях
- •12.3. Единая государственная система предупреждения и ликвидации чс
- •12.3.1. Структура рсчс
- •12.3.2. Режимы функционирования рсчс
- •12.3.3. Подготовка населения в области защиты от чрезвычайных ситуаций
- •12.4. Организация гражданской обороны (го)
- •13. Правовые, нормативно-технические и организационные основы обеспечения бжд
- •13.1. Основные принципы государственной политики
- •13.2. Государственное управление охраной труда
- •13.2.1. Государственный контроль и надзор за соблюдением трудового законодательства и охраной труда
- •13.2.2. Органы государственного специализированного надзора
- •13.2.3. Государственная экспертиза условий труда
- •13.2.4. Организация общественного контроля
- •13.3. Система стандартов безопасности труда
- •13.4. Организация работ по охране труда на предприятии
- •13.4.1. Планирование и финансирование мероприятий по охране труда
- •13.4.2. Организация обучения и проведения инструктажей по охране труда
- •13.4.3. Аттестация рабочих мест по условиям труда
- •14. Производственный травматизм
- •14.1. Порядок расследования, оформления и учета несчастных случаев на производстве
- •14.2. Классификация причин производственного травматизма
- •14.3. Методы изучения причин производственного травматизма
- •14.4. Система обязательного социального страхования от несчастных случаев на производстве
- •Библиографический список
9.2. Критерии опасности ионизирующих излучений
Степень воздействия ионизирующих излучений на живой организм зависит от мощности дозы облучения, продолжительности этого воздействия и вида излучения и радионуклида, попавшего в организм.
Экспозиционная доза – это энергетическая характеристика γ-излучения и рентгеновского излучения в сухом атмосферном воздухе. Единица измерения – кулон на килограмм (Кл/кг). 1 Кл/кг – это экспозиционная доза излучения, при которой сумма электрических зарядов ионов одного знака, образовавшихся в 1 кг воздуха, равна 1 кулону.
Внесистемная единица – рентген (Р). 1 Р = 2,85 . 10-4 Кл/кг.
Биологическое действие ионизирующих излучений на живой организм зависит от поглощенной дозы. Это количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма).
Поглощенная энергия измеряется в греях (1 Гр = 1 Дж/кг) в системе СИ.
Внесистемная единица рад (1 рад = 0,01 Гр). Однако эта единица не учитывает того, что α-излучение гораздо опаснее γ- и β-излучений (при одинаковой поглощенной дозе).
Эквивалентная доза учитывает биологическую активность излучения и измеряется в зивертах (1 Зв = 1 Дж/кг).
Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиационную опасность для организма разных видов ионизирующего излучения.
Для оценки эквивалентной дозы применяется БЭР (биологический эквивалент рада). 1 БЭР = 0,01 Зв.
Эффективная доза облучения. Разные части тела (органы, ткани) по-разному чувствительны к ионизационному излучению. Так, при одинаковой эквивалентной дозе облучения возникновение рака в легких более вероятнее, чем в щитовидной железе. Поэтому введена эффективная доза, получаемая путем умножения эквивалентной дозы на соответствующий коэффициент и суммирования по всем органам и тканям. Эффективная доза отражает суммарный эффект облучения, измеряется в зивертах.
Международной комиссией по радиационной защите рекомендованы значения коэффициентов радиационного риска для определения эффективно-эквивалентной дозы: костный мозг – 0,12; костная ткань – 0,03; щитовидная железа – 0,03; молочная железа – 0,15, легкие – 0,12, гениталии – 0,25, другие ткани – 0,3 (сумма коэффициентов для организма в целом равна 1,0).
Поглощенная, эквивалентная и эффективно-эквивалентная дозы описывают индивидуально полученные дозы облучения.
Облучение, полученное группой людей, измеряется в человеко-зивертах и называется коллективной эффективной дозой.
Поскольку многие радионуклиды распадаются очень медленно и остаются радиоактивными в отдаленном будущем, то для учета коллективной дозы, которую получат многие поколения людей от какого-либо радиоактивного источника за все время его существования, используют величину ожидаемой (полной) коллективной эффективной дозы.
Показатели загрязнения местности. При выпадении радиоактивных веществ на местности образуются районы радиоактивного загрязнения. Для оценки внешнего и внутреннего облучения используется показатель, называемый мощностью дозы излучения (или уровнем радиации на местности), измеряемый дозиметрическими приборами в дозе облучения за единицу времени (рентген/час, рад/час) и обозначаемый РИЗМ.
Для оценки загрязнения различных предметов, техники, продуктов используются более мелкие единицы измерения (миллирентген/час, микрорентген/час; миллирад/час; микрорад/час).
Другой показатель – доза радиации до полного распада радиоактивного вещества (Д):
Д = 5 РИЗМ . tИЗМ,
где РИЗМ – рад/с; tИЗМ – время измерения после заражения.
Количество радиоактивного вещества, приходящееся на единицу поверхности, объема или веса, называется плотностью радиоактивного заражения (соответственно поверхностное, объемное и удельное загрязнение) и выражается в Ки/м3, Ки/дм3, Ки/кг. Ки (кюри) – единица радиоактивности, равная 3,7•1010 распадов в с.