Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
молекулярка.docx
Скачиваний:
61
Добавлен:
30.03.2015
Размер:
244.2 Кб
Скачать

5. Уравнение Бернулли

Рассмотрим наклонную трубку переменного сечения (или реальную трубу), по которой движется идеальная несжимаемая жидкость в направлении справа налево. Мысленно выделим область трубки, ограниченную сечениями, и в которых скорости течения равны соответственно и(рис. 9.5). Пустьи– давления, оказываемые на сечения жидкостью вне элемента,и– отмеряемые от некоторого горизонтального уровня высоты, на которых находятся сечения,– плотность жидкости.

Рис. 9.4

Определим изменение полной энергии, происходящее в выделенной области за малый промежуток времени .

Полная энергия выделенного элемента трубки складывается из кинетической энергии и из потенциальной энергии, обусловленной силами тяжести. При течении жидкости эта энергия изменяется. Согласно закону сохранения энергии изменение энергии рассматриваемого элемента должно быть равно работе внешних сил, действующих на этот элемент.

За малый промежуток времени рассматриваемый элемент жидкости 1-2 переместится по трубке. Его границы займут положения 1ґ и 2ґ. Сечение 1 переместится на расстояние, сечение 2 – на расстояние. Так как поток стационарный, то энергия части элемента между сечениями 1ґ и 2ґ остается неизменной. Объем жидкости, прошедший за времячерез сечение 1, равенМасса этой части жидкости. Аналогично, часть жидкости, находящаяся между сечениями 2 и 2ґ, имеет объеми массу. Согласно уравнению неразрывностии, в случае несжимаемой жидкости,.

Потенциальная энергия частиц жидкости, находящаяся между сечениями 1 и 1ґ, равна .

Кинетическая энергия этих частиц .

Аналогично, потенциальная и кинетическая энергии частиц жидкости, находящиеся между сечениями 2 и 2ґ, равны и.

Тогда изменение полной энергии всего рассматриваемого элемента жидкости будет

(9.5)

Силы давления на стенки трубки тока перпендикулярны в каждой точке направлению перемещения жидкости, вследствие чего работы не совершают.

В соответствии с законом сохранения энергии, найденная величина энергии должна равняться работе внешних сил (давления) по перемещению массы :

(9.6)

Определим эту работу. Внешняя сила давления совершает работупо перемещению втекающей массы на пути, в то же время вытекающая масса совершает работу против внешней силы давленияна пути. Поэтому искомая работа.

Так как , имеем

(9.7)

Приравнивая выражения (9.5) и (9.7), сокращая на и перенося члены с одинаковыми индексами в одну часть равенства, получим

(9.8)

Так как сечения 1 и 2 были выбраны произвольно, то для любого сечения данной трубки тока должно быть

(9.9)

Это уравнение называется уравнением Бернулли (выведено в 1738 г.) для стационарного течения идеальной несжимаемой жидкости.

Первое слагаемое левой части этого уравнения представляет собой удельную кинетическую энергию жидкости, второе – удельную потенциальную энергию жидкости в поле силы тяжести, третье – удельную энергию жидкости, обусловленную силами давления. Следовательно, уравнение Бернулли выражает закон сохранения энергии (удельной) и формулируется так:

при установившемся движении идеальной несжимаемой жидкости сумма удельной энергии давления и кинетической и потенциальной удельных энергий остается постоянной величиной на любом поперечном сечении потока.

Как видно из уравнения (9.9), все члены его левой части можно рассматривать как величины давления. Величину называют статическим давлением, величину– динамическим давлением, величину– гидравлическим давлением. Следовательно, уравнению Бернулли можно дать ещё такую формулировку:

в установившемся потоке идеальной несжимаемой жидкости полное давление, слагающееся из динамического, гидравлического и статического давлений, постоянно на любом поперечном сечении потока.

Уравнение Бернулли является одним из основных законов механики движения жидкостей и газов, имеющим большое прикладное значение. Приведем несколько примеров.

1. Пусть скорости частиц жидкости в сечениях 1 и 2 трубки тока равны между собой. Тогда из уравнений (9.9) следует, что для этих сечений , т.е. разность давлений как и в покоящейся жидкости определяется разностью высот.

2. Для горизонтальной трубки тока уравнение Бернулли принимает вид: .

Из уравнений Бернулли и неразрывности следует, что в местах сужения трубопровода скорость течения жидкости возрастает, а давление понижается.

Поток воздуха проходит по трубке с переменным сечением. У открытого широкого конца трубки давление выходящего воздуха становится равным атмосферному. В более узких сечениях давление меньше атмосферного. Поэтому жидкость из сосуда движется по вертикальной трубке. Это явление используется в водо- и пароструйных насосах, пульверизаторах, опрыскивателях сельскохозяйственных растений, ингаляторе и других распылителях жидкости и устройствах.

3. Гидротурбина работает за счет большого давления жидкости (но имеющего малую скорость), падающего по суживающемуся трубопроводу через сопло на лопатки рабочего колеса. При этом потенциальная энергия давления воды переходит в узком трубопроводе и сопле в кинетическую энергию, за счет которой рабочее колесо приводится во вращение.

Аналогичным образом работает и газотурбина.

4. Гидротаран. Вода движется от плотины по наклонному трубопроводу. В конце трубопровода имеется подвижная заслонка, которая может периодически быстро перекрывать трубопровод.

При каждом перекрытии потока динамическое давление в нем внезапно падает до нуля, а статическое давление резко возрастает, перегоняя часть воды по вертикальной трубе в водонапорный бак. Это устройство используется для орошения земель, водоснабжения животноводческих ферм и т.д.

5. За счет разности давлений над и под крылом, создается подъемная сила самолета. При этом вокруг движущегося крыла возникает циркуляция воздуха, направленная по часовой стрелке. Над крылом скорости циркуляции и встречного воздушного потока складываются, под крылом – вычитаются. Поэтому относительная скорость движения воздуха над крылом превышает относительную скорость под крылом.

6. Аэрация почвы. Представим себе вспаханное поле, где валы чередуются с бороздами. Пусть ветер дует перпендикулярно к направлению борозд. Ясно, что наличие неровностей скажется на характере воздушного потока: вблизи земли линии тока будут искривлены и выровняются лишь на некоторой высоте над землей. Поэтому приземный слой воздуха является своеобразной трубкой тока переменного сечения, ограниченная снизу поверхностью земли, а сверху – ближайшей горизонтальной поверхностью, образованной невозмущенными линиями тока. Тогда в соответствии с уравнениями неразрывности и Бернулли давление воздуха над бороздами будет больше, чем над валами. Поэтому в поверхностном слое почвы возникает движение почвенного воздуха, направленное от оснований борозд к вершинам валов, что обеспечивает газообмен между почвой и атмосферой. Это явление и называется аэрацией почвы. Аэрация обогащает почвенный воздух кислородом, а приземный воздух – углекислотой, тем самым создавая благоприятные условия для развития растений.