
- •Самарский государственный архитектурно-строительный университет
- •О.В. Прохорова
- •Оглавление
- •Введение
- •Основные понятия и определения предмета защиты информации
- •Правовое обеспечение информационной безопасности
- •Статья 272 ук рф
- •Статья 273 ук рф
- •Статья 274 ук рф
- •Статья 146 ук рф
- •Организационно – распорядительная документация
- •1.3. Санкционированный и несанкционированный доступ
- •1.4. Угрозы безопасности и каналы реализации угроз
- •1.5. Основные принципы обеспечения информационной безопасности
- •1.6. Ценность информации
- •1.7. Меры обеспечения безопасности компьютерных систем
- •1.8. Характеристика способов защиты компьютерной информации
- •2. Разграничение доступа к ресурсам
- •Политики безопасности
- •Дискреционные политики безопасности
- •Мандатные политики безопасности
- •Контроль доступа, базирующийся на ролях
- •Политика безопасности сети
- •3. Идентификация и аутентификация субъектов
- •3.1. Классификация подсистем идентификации и аутентификации субъектов
- •3.2. Парольные системы идентификации и аутентификации пользователей
- •Методы и средства криптографической защиты
- •4.1. Принципы криптографической защиты информации
- •4.2. Традиционные симметричные криптосистемы
- •1. Шифры замены.
- •2. Шифры перестановки.
- •3. Шифры гаммирования.
- •4.2.1. Шифрование методом замены
- •Шифрование методом Цезаря
- •Простая моноалфавитная замена
- •Шифр Гронсфельда
- •Шифрование методом Вернама
- •4.2.2. Шифрование методами перестановки
- •Метод простой перетановки
- •Алгоритм Гамильтона
- •Шифрование методом гаммирования
- •4.3.Элементы криптоанализа
- •4.4. Современные симметричные системы шифрования
- •4.5. Асимметричные криптосистемы
- •4.5.1. Принципы асимметричного шифрования
- •4.5.2. Однонаправленные функции
- •Целочисленное умножение
- •Модульная экспонента
- •4.5.3. Алгоритм шифрования rsa
- •Алгоритм формирования ключевой пары пользователем а
- •Шифрование и дешифрование сообщений в криптосистеме rsa
- •Действия получателя а
- •Действия отправителя b
- •Действия пользователя a
- •4.6. Сравнение симметричных криптосистем с асимметричными
- •Контроль целостности информации. Электронно-цифровая подпись
- •5.1. Проблема обеспечения целостности информации
- •Алгоритм вычисления контрольной суммы
- •5.2. Функции хэширования и электронно-цифровая подпись
- •1. Для документа м формируется дайджест (контрольная сумма) h с помощью заданного алгоритма хэширования.
- •2. Сформированный дайджест h шифруют на секретном ключе отправителя сообщения. Полученная в результате шифрования последовательность и есть эцп.
- •3. Сообщение м и его эцп передаются получателю сообщения.
- •5.3. Инфраструктура открытых ключей pki
- •Структура, сервисы и архитектура pki
- •Программные средства поддержки pki
- •Хранение и распределение ключевой информации
- •Типовые схемы хранения ключевой информации
- •Алгоритм идентификации и аутентификации для схемы 1
- •Алгоритм идентификации и аутентификации для схемы 2
- •Защита баз данных аутентификации в ос Windows nt и unix
- •Алгоритм хэширования lanman
- •Алгоритм хэширования ntlm
- •Иерархия ключевой информации
- •Распределение ключей
- •1. Распределение ключевой информации с использованием одного
- •2. Прямой обмен сеансовыми ключами между пользователями.
- •Прямой обмен сеансовыми ключами между пользователями
- •Протокол Диффи-Хеллмана
- •Протоколы безопасной удаленной аутентификации пользователей
- •Протокол chap (Challenge Handshaking Authentication Protocol)
- •Протокол одноразовых ключей s/key
- •Реализация метода «запрос-ответ» в oc Windows при сетевой аутентификации
- •Алгоритм формирования ответа
- •7. Защита от разрушающих программных воздействий
- •7.1. Понятие разрушающего программного воздействия
- •Модели взаимодействия прикладной программы и рпв
- •Компьютерные вирусы как класс рпв
- •Классификация файловых вирусов по способу заражения
- •Перезаписывающие вирусы
- •Вирусы-компаньоны
- •Файловые черви
- •Вирусы-звенья
- •Паразитические вирусы
- •Вирусы, поражающие исходный код программ
- •1. Загрузка вируса в память.
- •Защита от рпв. Изолированная программная среда
- •Эвристическая методика выявления рпв в bios
- •8. Защита информации в компьютерных сетях
- •8.1. Основные угрозы и причины уязвимости сети internet
- •Классификация типовых удаленных атак на интрасети
- •Отказ в обслуживании (DoS)
- •Сканирование компьютерных сетей
- •Ограничение доступа в сеть. Межсетевые экраны
- •Фильтрующие маршрутизаторы (пакетные фильтры)
- •Шлюзы сетевого уровня
- •Шлюз прикладного уровня
- •Виртуальные частные сети (vpn)
- •Протокол skip
- •Доменная архитектура вWindowsNt. Служба Active Directory
- •Централизованный контроль удаленного доступа. Серверы аутентификации
- •Прокси – сервер
- •Библиографический список
3. Сообщение м и его эцп передаются получателю сообщения.
Схема проверки ЭЦП
1. Получатель для проверки ЭЦП должен иметь доступ к самому сообщению М и его ЭЦП.
2. Далее идет
автоматическая проверка полученной
ЭЦП на основе известного только
установщику ЭЦП алгоритма хэширования,
, получатель получает хэш
присланного
сообщенияМ.
3. Зная открытый ключ отправителя, получатель автоматически дешифрует ЭЦП, в результате чего получает хэш H, сформированный на этапе установки ЭЦП.
4. Критерием
целостности присланного сообщения М
и подтверждения его автора является
совпадение хэшей H
и
.
Если это равенство не выполнено, то
принимается решение о некорректности
ЭЦП со всеми вытекающими отсюда
последствиями.
Целостность передаваемого сообщения гарантируется свойствами функции хэширования. Подлинность авторства сообщения гарантируется используемой технологией асимметричного шифрования. Злоумышленник не сможет подписаться другим пользователем, так как не имеет доступа к его секретному ключу.
Следует отметить, что использование секретного ключа на этапе установки ЭЦП защищает сообщение от активных изменений. Злоумышленник уже не способен скомпрометировать контрольную сумму, в качестве которой здесь выступает дайджест сообщения.
Наиболее известными алгоритмами ЭЦП являются RSA, Эль-Гамаля, DSA. Отечественным стандартом ЭЦП является ГОСТ 34.10-94 [15].
5.3. Инфраструктура открытых ключей pki
Вступивший в силу с 22 января 2002 года Федеральный закон «Об электронно-цифровой подписи (ЭЦП)» явился базовым законом, в рамках которого возможна организация защищенного документооборота на федеральном уровне. При этом ЭЦП стала иметь доказательную силу при возникновении конфликтных ситуаций.
Одной из наиболее актуальных задач при реализации защищенного документооборота, является реализация сервиса безопасности, отвечающего за распределение криптографических ключей. Реализация угроз, нарушающих безопасное функционирование данного сервиса, может иметь катастрофическое значение для безопасности электронного документооборота. Наиболее безопасным способом реализации данного сервиса является способ, основанный на управлении открытыми ключами третьей стороной. Систематическим, расширяемым, унифицированным и легко управляемым подходом к распределению открытых ключей стало введение сертификатов открытых ключей. Технология PKI (Public Key Infrastructure) является продуманной инфраструктурой безопасности, предназначенной для распространения ОК, управления цифровыми сертификатами и ключами пользователей.
Задачей PKI является определение политики выпуска цифровых сертификатов, выдача их и аннулирование, хранение информации, необходимой для последующей проверки правильности сертификатов. В число приложений, поддерживающих PKI, входят: защищеннаяэлектронная почта, протоколы платежей, электронные чеки, электронный обмен информацией, защита данных в сетях с протоколомIP, электронные формы и документы с электроннойцифровой подписью(ЭЦП).
Деятельность инфраструктуры управления открытыми ключами осуществляется на основе регламента системы. Инфраструктура открытых ключей основывается на использовании принципов криптографической системы с открытым ключом. Инфраструктура управления открытыми ключами состоит изцентра сертификации, конечных пользователей, центра регистрации и сетевого справочника.
Использование инфраструктуры открытых ключей позволяет обеспечить выполнение следующих условий [16].
1. Лицо или процесс, идентифицируемый как отправитель электронного документа, действительно является инициатором отправления.
2. Лицо или процесс, выступающий получателем электронного документа, действительно является тем получателем, которого имел в виду отправитель.
3. Целостность и конфиденциальность передаваемой информации не нарушена.
Реализация PKI связана с решением ряда проблем. Приведем некоторые из них.
Инструментальные системы поддержки инфраструктуры ОК должны отвечать требованиям международных и Российских стандартов. Достижение этого возможно только при использовании специальных сертифицированных программно-аппаратных компьютерных систем.
Распространение и хранение ключей должно производиться в юридически точно (де-юре) определенной системе на базе международных криптографических стандартов.
Администраторы и пользователи электронного документооборота с ЭЦП должны пройти обучение и получить соответствующие права и сертификаты.