
- •Самарский государственный архитектурно-строительный университет
- •О.В. Прохорова
- •Оглавление
- •Введение
- •Основные понятия и определения предмета защиты информации
- •Правовое обеспечение информационной безопасности
- •Статья 272 ук рф
- •Статья 273 ук рф
- •Статья 274 ук рф
- •Статья 146 ук рф
- •Организационно – распорядительная документация
- •1.3. Санкционированный и несанкционированный доступ
- •1.4. Угрозы безопасности и каналы реализации угроз
- •1.5. Основные принципы обеспечения информационной безопасности
- •1.6. Ценность информации
- •1.7. Меры обеспечения безопасности компьютерных систем
- •1.8. Характеристика способов защиты компьютерной информации
- •2. Разграничение доступа к ресурсам
- •Политики безопасности
- •Дискреционные политики безопасности
- •Мандатные политики безопасности
- •Контроль доступа, базирующийся на ролях
- •Политика безопасности сети
- •3. Идентификация и аутентификация субъектов
- •3.1. Классификация подсистем идентификации и аутентификации субъектов
- •3.2. Парольные системы идентификации и аутентификации пользователей
- •Методы и средства криптографической защиты
- •4.1. Принципы криптографической защиты информации
- •4.2. Традиционные симметричные криптосистемы
- •1. Шифры замены.
- •2. Шифры перестановки.
- •3. Шифры гаммирования.
- •4.2.1. Шифрование методом замены
- •Шифрование методом Цезаря
- •Простая моноалфавитная замена
- •Шифр Гронсфельда
- •Шифрование методом Вернама
- •4.2.2. Шифрование методами перестановки
- •Метод простой перетановки
- •Алгоритм Гамильтона
- •Шифрование методом гаммирования
- •4.3.Элементы криптоанализа
- •4.4. Современные симметричные системы шифрования
- •4.5. Асимметричные криптосистемы
- •4.5.1. Принципы асимметричного шифрования
- •4.5.2. Однонаправленные функции
- •Целочисленное умножение
- •Модульная экспонента
- •4.5.3. Алгоритм шифрования rsa
- •Алгоритм формирования ключевой пары пользователем а
- •Шифрование и дешифрование сообщений в криптосистеме rsa
- •Действия получателя а
- •Действия отправителя b
- •Действия пользователя a
- •4.6. Сравнение симметричных криптосистем с асимметричными
- •Контроль целостности информации. Электронно-цифровая подпись
- •5.1. Проблема обеспечения целостности информации
- •Алгоритм вычисления контрольной суммы
- •5.2. Функции хэширования и электронно-цифровая подпись
- •1. Для документа м формируется дайджест (контрольная сумма) h с помощью заданного алгоритма хэширования.
- •2. Сформированный дайджест h шифруют на секретном ключе отправителя сообщения. Полученная в результате шифрования последовательность и есть эцп.
- •3. Сообщение м и его эцп передаются получателю сообщения.
- •5.3. Инфраструктура открытых ключей pki
- •Структура, сервисы и архитектура pki
- •Программные средства поддержки pki
- •Хранение и распределение ключевой информации
- •Типовые схемы хранения ключевой информации
- •Алгоритм идентификации и аутентификации для схемы 1
- •Алгоритм идентификации и аутентификации для схемы 2
- •Защита баз данных аутентификации в ос Windows nt и unix
- •Алгоритм хэширования lanman
- •Алгоритм хэширования ntlm
- •Иерархия ключевой информации
- •Распределение ключей
- •1. Распределение ключевой информации с использованием одного
- •2. Прямой обмен сеансовыми ключами между пользователями.
- •Прямой обмен сеансовыми ключами между пользователями
- •Протокол Диффи-Хеллмана
- •Протоколы безопасной удаленной аутентификации пользователей
- •Протокол chap (Challenge Handshaking Authentication Protocol)
- •Протокол одноразовых ключей s/key
- •Реализация метода «запрос-ответ» в oc Windows при сетевой аутентификации
- •Алгоритм формирования ответа
- •7. Защита от разрушающих программных воздействий
- •7.1. Понятие разрушающего программного воздействия
- •Модели взаимодействия прикладной программы и рпв
- •Компьютерные вирусы как класс рпв
- •Классификация файловых вирусов по способу заражения
- •Перезаписывающие вирусы
- •Вирусы-компаньоны
- •Файловые черви
- •Вирусы-звенья
- •Паразитические вирусы
- •Вирусы, поражающие исходный код программ
- •1. Загрузка вируса в память.
- •Защита от рпв. Изолированная программная среда
- •Эвристическая методика выявления рпв в bios
- •8. Защита информации в компьютерных сетях
- •8.1. Основные угрозы и причины уязвимости сети internet
- •Классификация типовых удаленных атак на интрасети
- •Отказ в обслуживании (DoS)
- •Сканирование компьютерных сетей
- •Ограничение доступа в сеть. Межсетевые экраны
- •Фильтрующие маршрутизаторы (пакетные фильтры)
- •Шлюзы сетевого уровня
- •Шлюз прикладного уровня
- •Виртуальные частные сети (vpn)
- •Протокол skip
- •Доменная архитектура вWindowsNt. Служба Active Directory
- •Централизованный контроль удаленного доступа. Серверы аутентификации
- •Прокси – сервер
- •Библиографический список
5.2. Функции хэширования и электронно-цифровая подпись
Электронно-цифровая подпись (ЭЦП) сообщения является уникальной последовательностью, связанной с сообщением, подлежащей проверке на принимающей стороне с целью обеспечения целостности передаваемого сообщения и подтверждения его авторства.
Электронно-цифровая подпись (ЭЦП) используется для аутентификации текстов, передаваемых по открытым каналам связи. Ее использование позволяет гарантировать выполнение следующих условий.
Лицо или процесс, идентифицируемый как отправитель электронного документа, действительно является инициатором отправления.
Целостность передаваемой информации не нарушена.
Не дает отказаться лицу, идентифицируемого как отправителя электронного документа, от обязательств, связанных с подписанным текстом.
ЭЦП представляет собой относительно небольшое количество цифровой информации, дополняющей электронный документ и передаваемой вместе с ним.
Использование ЭЦП предполагает введение асимметричной системы шифрования и, следовательно, ключевой пары (ОК, СК), а также двух процедур:
1. Процедуру установки ЭЦП (подписание документа).
2. Процедуру проверки ЭЦП (аутентификация документа).
Процедура установки ЭЦП использует секретный ключ отправителя сообщения, а процедура проверки ЭЦП – открытый ключ отправителя сообщения (рис. 5.1). Здесь M – электронный документ, E – электронно-цифровая подпись.
Рис. 5.1. Схема использования ЭЦП
В технологии ЭЦП ведущее значение имеют однонаправленные функции хэширования. Использование функций хэширования позволяет формировать криптографически стойкие контрольные суммы передаваемых сообщений.
Функцией хэширования H называют функцию, сжимающую сообщение произвольной длины M, в значение фиксированной длины H(M) (несколько десятков или сотен бит), и обладающую свойствами необратимости, рассеивания и чувствительности к изменениям. Значение H(M) обычно называют дайджестом сообщения M.
Свойство необратимости подразумевает вычислительную трудоемкость воссоздания документа M по хэш-образу H(M), так как хэш-образ сложным образом зависит от документа M и не позволяет его восстановить.
Свойство рассеивания подразумевает то, что вероятность совпадения значений хешей двух различных документов M1 и M2 должна быть чрезмерно мала.
Свойство чувствительности к изменениям подразумевает то, что хэш-функция должна быть очень чувствительна к всевозможным изменениям в документе M, таким, как вставки, выбросы, перестановки и т.д.
Наиболее известными алгоритмами хэширования являются MD4, MD5, SHA.
Электронно-цифровая подпись формируется как результат шифрования дайджеста сообщения с помощью секретного ключа, ставящего подпись. Схемы процедур установки и проверки ЭЦП представлены на рис. 5.2.
Рис. 5.2. Схема процедур установки и проверки ЭЦП
Таким образом, схемы установки и проверки ЭЦП выглядят следующим образом.
Схема установки ЭЦП