
- •Самарский государственный архитектурно-строительный университет
- •О.В. Прохорова
- •Оглавление
- •Введение
- •Основные понятия и определения предмета защиты информации
- •Правовое обеспечение информационной безопасности
- •Статья 272 ук рф
- •Статья 273 ук рф
- •Статья 274 ук рф
- •Статья 146 ук рф
- •Организационно – распорядительная документация
- •1.3. Санкционированный и несанкционированный доступ
- •1.4. Угрозы безопасности и каналы реализации угроз
- •1.5. Основные принципы обеспечения информационной безопасности
- •1.6. Ценность информации
- •1.7. Меры обеспечения безопасности компьютерных систем
- •1.8. Характеристика способов защиты компьютерной информации
- •2. Разграничение доступа к ресурсам
- •Политики безопасности
- •Дискреционные политики безопасности
- •Мандатные политики безопасности
- •Контроль доступа, базирующийся на ролях
- •Политика безопасности сети
- •3. Идентификация и аутентификация субъектов
- •3.1. Классификация подсистем идентификации и аутентификации субъектов
- •3.2. Парольные системы идентификации и аутентификации пользователей
- •Методы и средства криптографической защиты
- •4.1. Принципы криптографической защиты информации
- •4.2. Традиционные симметричные криптосистемы
- •1. Шифры замены.
- •2. Шифры перестановки.
- •3. Шифры гаммирования.
- •4.2.1. Шифрование методом замены
- •Шифрование методом Цезаря
- •Простая моноалфавитная замена
- •Шифр Гронсфельда
- •Шифрование методом Вернама
- •4.2.2. Шифрование методами перестановки
- •Метод простой перетановки
- •Алгоритм Гамильтона
- •Шифрование методом гаммирования
- •4.3.Элементы криптоанализа
- •4.4. Современные симметричные системы шифрования
- •4.5. Асимметричные криптосистемы
- •4.5.1. Принципы асимметричного шифрования
- •4.5.2. Однонаправленные функции
- •Целочисленное умножение
- •Модульная экспонента
- •4.5.3. Алгоритм шифрования rsa
- •Алгоритм формирования ключевой пары пользователем а
- •Шифрование и дешифрование сообщений в криптосистеме rsa
- •Действия получателя а
- •Действия отправителя b
- •Действия пользователя a
- •4.6. Сравнение симметричных криптосистем с асимметричными
- •Контроль целостности информации. Электронно-цифровая подпись
- •5.1. Проблема обеспечения целостности информации
- •Алгоритм вычисления контрольной суммы
- •5.2. Функции хэширования и электронно-цифровая подпись
- •1. Для документа м формируется дайджест (контрольная сумма) h с помощью заданного алгоритма хэширования.
- •2. Сформированный дайджест h шифруют на секретном ключе отправителя сообщения. Полученная в результате шифрования последовательность и есть эцп.
- •3. Сообщение м и его эцп передаются получателю сообщения.
- •5.3. Инфраструктура открытых ключей pki
- •Структура, сервисы и архитектура pki
- •Программные средства поддержки pki
- •Хранение и распределение ключевой информации
- •Типовые схемы хранения ключевой информации
- •Алгоритм идентификации и аутентификации для схемы 1
- •Алгоритм идентификации и аутентификации для схемы 2
- •Защита баз данных аутентификации в ос Windows nt и unix
- •Алгоритм хэширования lanman
- •Алгоритм хэширования ntlm
- •Иерархия ключевой информации
- •Распределение ключей
- •1. Распределение ключевой информации с использованием одного
- •2. Прямой обмен сеансовыми ключами между пользователями.
- •Прямой обмен сеансовыми ключами между пользователями
- •Протокол Диффи-Хеллмана
- •Протоколы безопасной удаленной аутентификации пользователей
- •Протокол chap (Challenge Handshaking Authentication Protocol)
- •Протокол одноразовых ключей s/key
- •Реализация метода «запрос-ответ» в oc Windows при сетевой аутентификации
- •Алгоритм формирования ответа
- •7. Защита от разрушающих программных воздействий
- •7.1. Понятие разрушающего программного воздействия
- •Модели взаимодействия прикладной программы и рпв
- •Компьютерные вирусы как класс рпв
- •Классификация файловых вирусов по способу заражения
- •Перезаписывающие вирусы
- •Вирусы-компаньоны
- •Файловые черви
- •Вирусы-звенья
- •Паразитические вирусы
- •Вирусы, поражающие исходный код программ
- •1. Загрузка вируса в память.
- •Защита от рпв. Изолированная программная среда
- •Эвристическая методика выявления рпв в bios
- •8. Защита информации в компьютерных сетях
- •8.1. Основные угрозы и причины уязвимости сети internet
- •Классификация типовых удаленных атак на интрасети
- •Отказ в обслуживании (DoS)
- •Сканирование компьютерных сетей
- •Ограничение доступа в сеть. Межсетевые экраны
- •Фильтрующие маршрутизаторы (пакетные фильтры)
- •Шлюзы сетевого уровня
- •Шлюз прикладного уровня
- •Виртуальные частные сети (vpn)
- •Протокол skip
- •Доменная архитектура вWindowsNt. Служба Active Directory
- •Централизованный контроль удаленного доступа. Серверы аутентификации
- •Прокси – сервер
- •Библиографический список
4.2.2. Шифрование методами перестановки
Шифрование перестановкой заключается в том, что символы открытого текста переставляются по определенному правилу в пределах некоторого блока этого текста. Данные преобразования приводят к изменению только порядка следования символов исходного сообщения.
При достаточной длине блока, в пределах которого осуществляется перестановка, и сложном неповторяющемся порядке перестановки можно достигнуть приемлемой для простых практических приложений стойкости шифра.
Метод простой перетановки
При шифровании методом простой перестановки производят деление открытого текста на блоки одинаковой длины, равной длине ключа. Ключ длины n представляет собой последовательность неповторяющихся чисел от 1 до n. Символы открытого текста внутри каждого из блоков переставляют в соответствие с символами ключа внутри блока справа налево. Элемент ключа Ki в заданной позиции блока говорит о том, что на данное место будет помещен символ открытого текста с номером Ki из соответствующего блока.
Пример 4.5.
Зашифруем открытый текст «ПРИЕЗЖАЮДНЕМ» методом перестановки с ключом К=3142.
П |
Р |
И |
Е |
З |
Ж |
А |
Ю |
Д |
Н |
Е |
М |
3 |
1 |
4 |
2 |
3 |
1 |
4 |
2 |
3 |
1 |
4 |
2 |
И |
П |
Е |
Р |
А |
З |
Ю |
Ж |
Е |
Д |
М |
Н |
Для дешифрования шифротекста необходимо символы шифротекста перемещать в позицию, указанную соответствующим им символом ключа Ki слева направо.
Алгоритм Гамильтона
Весьма высокую стойкость шифрования можно обеспечить усложнением перестановок по маршрутам типа гамильтоновских. При этом, для записи символов шифруемого текста используются вершины некоторого гиперкуба, а знаки зашифрованного текста считываются по маршрутам Гамильтона, причем используется восемь различных маршрутов. Размер ключа перестановки в данном случае равен восьми по числу вершин куба. Для примера, два из маршрутов Гамильтона представлено на рис. 4.2. Первому маршруту соответствует перестановка 4-0-2-3-1-5-7-6, второму 4-6-2-0-1-5-7-3 (нумерация символов в блоке осуществляется с нуля).
Рис. 4.2. Пример маршрутов Гамильтона
Пример 4.6.
Зашифруем открытый текст «ВОСЕМЬ МАРШРУТОВ» с помощью перестановок Гамильтона при использовании в качестве ключа двух перестановок, представленных на рис. 4.2.
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
В |
О |
С |
Е |
М |
Ь |
|
М |
А |
Р |
Ш |
Р |
У |
Т |
О |
В |
4 |
0 |
2 |
3 |
1 |
5 |
7 |
6 |
4 |
6 |
2 |
0 |
1 |
5 |
7 |
3 |
М |
В |
С |
Е |
О |
Ь |
М |
|
У |
О |
Ш |
А |
Р |
Т |
В |
Р |
Шифрование методом гаммирования
Под гаммированием понимают наложение на открытые данные по определенному закону гаммы шифра (двоичного числа, сформированного на основе генератора случайных чисел) [2] .
Гамма шифра – псевдослучайная последовательность, вырабатываемая по определенному алгоритму, используемая для шифровки открытых данных и дешифровки шифротекста.
Общая схема шифрования методом гаммирования представлена на рис. 4.3.
Рис. 4.3. Схема шифрования методом гаммирования
Принцип шифрования заключается в формировании генератором псевдослучайных чисел (ГПСЧ) гаммы шифра и наложении этой гаммы на открытые данные обратимым образом, например, путем сложения по модулю два. Процесс дешифрования данных сводится к повторной генерации гаммы шифра и наложении гаммы на зашифрованные данные. Ключом шифрования в данном случае является начальное состояние генератора псевдослучайных чисел. При одном и том же начальном состоянии ГПСЧ будет формировать одни и те же псевдослучайные последовательности.
Перед шифрованием открытые данные обычно разбивают на блоки одинаковой длины, например по 64 бита. Гамма шифра также вырабатывается в виде последовательности блоков той же длины.
Стойкость шифрования методом гаммирования определяется главным образом свойствами гаммы – длиной периода и равномерностью статистических характеристик. Последнее свойство обеспечивает отсутствие закономерностей в появлении различных символов в пределах периода. Полученный зашифрованный текст является достаточно трудным для раскрытия. По сути дела гамма шифра должна изменяться случайным образом для каждого шифруемого блока.
Обычно разделяют две разновидности гаммирования – с конечной и бесконечной гаммами. При хороших статистических свойствах гаммы стойкость шифрования определяется только длиной периода гаммы. При этом, если длина периода гаммы превышает длину шифруемого текста, то такой шифр теоретически является абсолютно стойким, т.е. его нельзя вскрыть при помощи статистической обработки зашифрованного текста, а можно раскрыть только прямым перебором. Криптостойкость в этом случае определяется размером ключа.