
- •Глава 1. «Строение материалов»
- •Раздел 1. Строение металлов
- •1.1. Атомно-кристаллическое строение
- •1.2. Дефекты строения кристаллических тел
- •1.3. Кристаллизация металлов
- •1.4. Формирование структуры деформированных металлов
- •Раздел 2. Строение сплавов
- •2.1. Фазы и структура металлических сплавов
- •2.2. Диаграммы состояния (фазового равновесия сплавов)
- •2.3. Диаграмма состояния системы железо – углерод
- •Раздел 3. Строение полимеров
- •3.1. Молекулярная структура полимеров
- •Глава 2. Модуль 2. «Свойства материалов и методы их определения»
- •Раздел 1. Свойства материалов
- •Критерии выбора материала
- •1.2. Механические свойства
- •1.3. Испытания долговечности
- •1.4. Изнашивание металлов
- •1.5. Физико-химические свойства материалов
- •Раздел 2. Методы контроля структуры и свойств материалов
- •2.1. Металлографические методы испытаний
- •2.2. Неразрушающие методы контроля
- •Глава 3. Модуль 3. «Термическая обработка»
- •Раздел 1. Основы теории термической обработки
- •Общие положения и определения
- •Классификация видов термической обработки стали
- •Теория термической обработки
- •Раздел 2. Технология термической обработки
- •2.1. Отжиг
- •2.2. Нормализация
- •2.3. Закалка
- •2.4. Отпуск
- •2.5. Термомеханическая обработка стали
- •Раздел 3. Поверхностное упрочнение металлов и сплавов
- •3.1. Упрочнение поверхности методом пластического деформирования
- •3.2. Поверхностная закалка
- •3.3. Химико-термическая обработка
- •3.4. Циркуляционный метод химико-термической обработки
- •Глава 4. Модуль 4. «Материалы, применяемые в технике»
- •Раздел 1. Промышленные стали и сплавы
- •Общая классификация и маркировка сталей
- •1.2. Маркировка сталей по евронормам
- •1.3. Инструментальные стали и сплавы
- •1.4. Коррозионностойкие стали
- •1.5. Жаростойкие и жаропрочные стали
- •1.6. Хладостойкие стали
- •1.7. Порошковые материалы
- •1.8. Чугуны
- •Раздел 2. Цветные металлы и сплавы
- •2.1. Медь и ее сплавы
- •2.2. Алюминий и его сплавы
- •2.3. Титан и его сплавы
- •2.4. Никель и его сплавы
- •Раздел 3. Неметаллические материалы
- •3.1. Пластические массы
- •3.2. Резины
- •Раздел 4. Композиционные материалы
- •4.1. Общая характеристика
- •Раздел 5. Материалы с особыми физическими свойствами
- •5.1. Магнитные материалы
- •5.2. Проводниковые материалы
- •5.3. Сплавы с особыми тепловыми и упругими свойствами
- •Приложение
- •Продолжение табл. 4
- •Продолжение табл. 4
- •Продолжение табл. 5
- •Продолжение табл. 5
- •Продолжение табл. 5
- •Перечень госТов на стали и сплавы
- •1. Сталь
- •2. Чугун
- •Глава 1. Модуль 1. «Строение материалов»……………….……13
Раздел 2. Технология термической обработки
2.1. Отжиг
Отжигом называется термическая обработка, в процессе которой производится нагрев деталей из стали до требуемой температуры с последующей выдержкой и медленным охлаждением в печи для получения однородной, равновесной, менее твердой структуры, свободной от остаточных напряжений и с минимальной плотностью дислокаций (106 - 107 см-2).
Наиболее распространенной разновидностью отжига является обыкновенный отжиг, который производится с целью смягчения стали перед механической обработкой и подготовки ее структуры к окончательной обработке, состоящей из закалки и отпуска. Этому отжигу подвергаются имеющие неблагоприятную грубозернистую структуру литые заготовки, а также заготовки, прошедшие ковку, штамповку и другие виды обработки давлением, также нуждающиеся в исправлении структуры.
В ряде случаев, когда получающиеся после отжига свойства обеспечивают долголетнюю службу детали, он оказывается окончательным видом термообработки. При обыкновенном отжиге сталь нагревается до температуры на 30÷50°С выше линии GSK, выдерживается при этой температуре до полного завершения структурно-фазовых превращений и охлаждается с очень высокой скоростью (менее 100°С/ч) в камере печи с отключенными источниками теплоты.
Заэвтектоидную сталь при отжиге нельзя нагревать выше точки Аст (линия SE), так как образующаяся при очень медленном охлаждении вокруг зерен перлита цементитная сетка затрудняет механическую обработку заготовки резанием и охрупчивает сталь. Умягчению стали при отжиге способствует очень малая плотность дислокаций.
Диффузионный отжиг, или гомогенизация, является разновидностью отжига, применяемого с целью устранения в легированной стали (как и в других сплавах) дендритной ликвации.
При диффузионном отжиге с целью интенсификации диффузионных процессов сталь нагревается до 1000÷1100°С и подвергается длительной выдержке (18÷24 ч). Для устранения крупнозернистости после гомогенизации производится обыкновенный отжиг, или нормализация.
Рекристаллизационный отжиг производится с целью устранения наклепа холоднодеформированного металла. Напомним, что наклепанный металл очень тверд и хрупок, его кристаллическая решетка вследствие высокой плотности дислокаций и наличия большого числа других дефектов (вакансий, перемещенных в междоузлия атомов), а также из-за искажений и больших внутренних напряжений находится в неравновесном состоянии, обладая большим запасом избыточной свободной энергии. В сильно наклепанном металле из-за слияния дислокаций в местах их скопления наблюдаются опасные дефекты - зародыши трещин.
Следовательно, в ряде случаев наклеп приходится устранять. Для этого требуется нагрев, стимулирующий диффузионные процессы. Наклеп можно устранить, применяя уже рассмотренный обыкновенный отжиг. Однако рекристаллизационный отжиг из-за значительно более низкой температуры и намного меньшей продолжительности его проведения при практически одинаковых результатах более предпочтителен.
Температура нагрева при этом виде отжига выбирается на 150÷250°С выше температуры рекристаллизации обрабатываемого сплава. Это наименьшая температура, необходимая для протекания в наклепанном металле процессов, возвращающих ему исходные (до деформации) значения характеристик механических и других свойств.
Температура рекристаллизации зависит от состава сплава и связана с температурой его плавления уравнением Тр = αТпл (где Тпл выражена в К; α - коэффициент, зависящий от природы сплава). Для углеродистых сталей и не сложных по составу сплавов он составляет 0,4, а у легированных сталей и сложных сплавов твердых растворов достигает 0,6÷0,8.
Рекристаллизационный отжиг углеродистой стали производится при температуре нагрева в пределах 600÷700°С.
Во время нагрева и выдержки в холодноде-формированном металле происходят рекристаллизационные процессы, суть которых сводится к таким следующим друг за другом по мере нагрева и выдержки явлениям, как аннигиляция (самоликвидация) противоположных по знаку дислокаций, выстраивание дислокационных стенок (из леса дислокаций) и, наконец, зарождение и рост новых равновесных зерен. Причем если первые два явления происходят при Т < Тр, то зарождение новых зерен происходит только при Т > Тр.
Заметное укрупнение рекристаллизованных зерен за счет поглощения более крупными зернами соседних мелких (собирательная рекристаллизация) происходит по окончании процесса формирования новых зерен из материала разрушенных старых. Для этого требуются продолжительные выдержки при повышенных температурах.
В рекристаллизованном металле плотность дислокаций составляет 107 см-2, поэтому он имеет низкие прочностные характеристики и высокую пластичность. Наклеп необходимо устранять после холодной обработки металла давлением, производимой при Т< Тр (ковка, штамповка, тонколистовая прокатка и в других случаях).